1. Please find the solutions y for the following differential equations: (10%)

(A).
$$x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + 2y = x^4 e^x$$

(B).
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 13y = \delta(t-\pi) + \delta(t-3\pi)$$
 with $y(0) = 1$ and $y'(0) = 0$.

- 2. Please find the values of k and the corresponding non-trivial solutions of y for the ordinary differential equation y''+ky=0 with the following boundary conditions: (A) y(0)=0 and $y(\pi)=0$; (B) y'(0) = 0 and $y'(\pi) = 0$. (10%)
- 3. Finite difference method is used to solve the boundary-value problem $y''-2xy'+3x^2y=e^{-x}$ with y(0)=1and y'(1) = 0, please write down the finite difference equations for the governing equation at point x_i and the boundary points. (20%)
- 4. Please drive the computation schemes and their corresponding orders of accuracy for the first-order derivative f_{i}^{\bullet} with the following three equival-spaced points: (A) f_{i-1} , f_{i} , and f_{i+1} ; (B) f_{i} , f_{i+1} , and f_{i+2} . (20%)
- 5. Please solve the partial differential equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ with the following boundary conditions: (A) 0 < x < 1, $0 < y < \pi$ and u(0, y) = 0, u(1, y) = 0, where $0 < y < \pi$; u(x, 0) = 1, $u(x, \pi) = 2$, where 0 < x < 0(B) $0 < x < \pi$, y > 0 and u(0, y) = 0, $u(\pi, y) = e^{-y}$, where y > 0; $\frac{\partial u(x, 0)}{\partial v} = 0$, where $0 < x < \pi$. (20%)
- 6. In the mathematical analysis of the organic waste and oxygen contents in a natural stream as shown below, Streeter and Phelps (1925) had made the following assumptions: plug flow, first-order reaction of organic waste with respect to its own concentration, unit stoichiometric ratio of oxygen consumption with respect to organic waste, and the interfacical transfer flux of oxygen as $k(C_{\sigma}^{*}-C_{\sigma})$. Please derive the concentrations of organic waste and oxygen as functions of distance if their concentrations are C_{bo} and C_{ao} , respectively, at discharging point, that is, x = 0. (20%)

that is, x = 0. (20%)

interfacial flux of O_Z : $k(C_A^* - (A))$ and $C_A^* = constant$ Air

Stream flow at velocity U (plug flow) X = O $C_A = C_{AD}$ (exygen) $C_D = C_{DD}$ (organic waste)