- A compound of oxygen and nitrogen contains 1.52 g of N and 3.47 g of O. The molar mass of this compound is known to be between 90 and 95 g/mol. (a)
 Determine its empirical formula. (b) Determine its molecular formula. [10%]
- 2. Name the following compounds in English [15%]:
 (a) HClO₃ (b) NaMnO₄ (c) Ba(HCO₃), (d) CuSO₄ (e) K₂Cr₂O₇
- 3. Consider the following equilibrium process (3% each) [total 15%]: $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ $\Delta H^\circ = 58.0 \text{ kJ}$
 - (a) Describe Le Chatelier's Principle

Predict the changes in the equilibrium if -

- (b) the reaction mixture is heated at constant volume
- (c) more NO₂ is added to the mixture
- (d) the whole reaction mixture is compressed
- (e) What is (are) the unit(s) of the equilibrium constant for this reaction?
- 4. (a) Expalin the relationship between the strength of an acid and its equilibrium constant (4%); (b) List chemical formulas for two strong acids (3%); (c) List two weak bases (3%) [total 10%]
- 5. Calculate the pH of a 0.050 M HNO₂ ($K_a = 4.5 \times 10^{-4}$) solution [15%]
- 6. (a) Define buffer solution (4%); (b) List one application for a buffer solution; (c) Give an example (with compositions) of a buffer solution. [10%]
- 7. Write the Lewis structures for the following compounds [15%] (a) CS₂ (b) HNO₃ (c) H₂SO₄ (d) C₂H₃Cl (e) CH₂O
- 8. Urea, (NH₂)₂CO, is prepared by the following reaction 2NH₃(g) + CO₂(g) → (NH₂)₂CO(aq) + H₂O(l)
 If 637.2 g of NH₃ are allowed to react with 1142 g of CO₂ (a) Which of the two reactants is the limiting reagent? (b) Calculate the mass of urea formed. [10%]