編號: 170 國立成功大學九十九學年度碩士班招生者試試類

共 し頁・第 | 頁

系所組別 環境工程學系丙組

考試科日· 微積分

日期:0307·新次:3

※ 考生請注意:本試題 □可 ②不可 使用計算機

- 1. Please answer the following questions. (35 points)
 - 1-1) Please calculate indefinite integration $F(x) = \int f(x)$ for $f(x) = \frac{x^2 + 1}{x^2 + 2x + 2}$ (5)
 - 1-2) Please calculate indefinite integration $F(x) = \int f(x)$ for $f(x) = \frac{1}{x\sqrt{x^2-1}}$ (5)
 - 1-3) Please answer the value of Gamma function $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ at $x = \frac{1}{2}$. (8)
 - 1-4) Please derive the range of a positive real number x that let $\sum_{n=1}^{\infty} \frac{1}{n^x}$ converge. (5)
- 1-5) Please calculate area that is surrounded by the following curves (6)

$$x^2 = py$$
, $x^2 = qy$, $y^2 = rx$, $y^2 = sx$ where $0 , $0 < r < s$$

1-6) Please calculate the volume of a shape that is made by rotating a shape S around x-axis. S is a closed area surrounded by $y=\cos x$, $0 < x < \pi$ and x-axis. (6)

2. Evaluate $\lim a_n$ for the following arrays $\{a_n\}$. (10 points)

2-1)
$$a_n = \frac{4n^3 - 2n^2 + 3n - 1}{2n^3 + 3n^2 - 4n + 5}$$
 (5)

2-2)
$$a_n = \frac{5 \times 3^n + 4 \times 4^n}{2 \times 3^n - 3 \times 4^n}$$
 (5)

- 3. For a function $z = f(x) = 2x^2 + y^2 3xy + x 2y + 3$, please answer the following questions. (12 points)
- 3-1) Please obtain the tangent plane g(x) at (x, y) = (2, 1). (6)
- 3-2) Please obtain a point on the surface defined by f(x), at whose tangent plane is parallel with z = x - y + 1 (6)

(背面仍有题目.請繼續作答)

170 國立成功大學九十九學年度碩士班招生考試試題

共 **2**頁 第 2頁

系所組別 :環境工程學系丙組

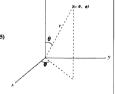
編號:

考試科目 微積分

考試日期:0307・節次:3

- ※ 考生請注意:本試題 □可 □不可 使用計算機
 - 4. For a function $z = f(x,y) = \frac{1}{2}xy^2 + \frac{1}{2}y^2 2xy 2y$, please answer the following questions.

 (18 points)
 - 4-1) Please calculate two stationary points P_1 and P_2 . (y value of $P_1 \le y$ value of P_2). (6)
 - 4-2) Please calculate Hessian of f(x, y) at P₁ and P₂ (6)
 - 4-3) Please identify whether P1 and P2 are; i) local maximal, ii) local minimal, or iii) saddle point, (6)
 - 5. For a differential equation $(x+y+1) dx + (x-y^2+3) dy = 0$, please answer the following questions. (10 points)
 - 5-1) Please demonstrate that the left hand side of this equation is closed (= a complete form). (4)
 - 5-2) For f(x,y) and g(x,y) that satisfies $\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}$, there is a function F that satisfies $f = \frac{\partial F}{\partial x}, g = \frac{\partial F}{\partial y}$. Please use this rule to solve the differential equation above. (6)
 - 6. As shown in the figure, spherical polar coordinates utilize r, θ , and ϕ to express a position in three-dimensional Euclidean space. On the other hand, Cartesian coordinate system uses orthogonal x, y, and x axes, Please answer the following questions. (15 points)


Please express x, y, and z with r, θ, and φ. (4)

6.2) To calculate the volume of an oval sphere with the following expression, please convert K into an expression using r, θ , and φ . (5)

$$\iiint\limits_K dxdydz,$$

$$K = \left\{ x, y, z \left| \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 \right\} \right\}$$

