編號: 181 國立成功大學一○○學年度碩士班招生考試試題 共 2 頁,第] 頁 系所組別: 生物醫學工程學系乙組 考試科目: 電子學 考試日期:0219, 節次:1 ## ※ 考生請注意:本試題 ☑可 □不可 使用計算機 - 1. In X-ray imaging system, the high voltage power supply is one of important components. Fig. 1 shows a circuit that may be extended to provide a dc voltage having higher multiples of input peak voltage. When excited by a sinusoid of amplitude V_p , and assuming ideal diodes, describe how this circuit works, and draw the waveform of the voltage across D_I . (20%) - 2. For a pn junction in equilibrium at room temperature with the doping concentration $N_A=10^{18}/\text{cm}^3$ and $N_D=10^{16}/\text{cm}^3$, the cross-sectional area $A=10^{-4}$ cm², and the intrinsic carrier density $n_i=1.5\times10^{10}/\text{cm}^3$, let the diffusion length of holes $L_p=5$ μm , the diffusion length of electrons $L_n=10$ μm , the diffusion constant of holes (in the n region) $D_p=10$ cm²/V.s, the diffusion constant of electrons (in the p region) $D_n=18$ cm²/V.s. If the pn junction is forward biased and conducting a current I=0.1 mA, calculate (a) the saturation current I_S , (b) the forward-bias voltage V, and (c) the component of the current I due to hole injection and that due to electron injection across the junction. (20%) - 3. Fig 2 shows two circuits for generating a constant current $I_O=10 \mu A$ under a 10 V voltage supply. Assuming that V_{BE} is 0.7 V at a current of 1 mA and neglecting the effect of finite β , determine the values of resistances for R_1 , R_2 , and R_3 . (15%) - 4. For a differential amplifier as shown in Fig. 3 and neglecting the transistor r_o , calculate the CMRR if there is a mismatch ΔR_C between the two collector resistances (i.e., Q_1 has R_C , and Q_2 has $R_C + \Delta R_C$). (15%) - 5. A capacitively coupled amplifier has a midband gain of 100 V/V, a single high-frequency pole at 10 kHz, and a single low-frequency pole at 100 Hz. If negative feedback is employed so that the midband gain is reduced to 10, determine the upper and lower 3-dB frequencies of the closed-loop gain. (10%) - 6. The Antoniou inductance-simulation circuit is often used to realize the second-order active filters. Design a bandpass filter using the Antoniou inductance-simulation circuit and derive its transfer function with the center-frequency gain K. (20%) 編號: 181 國立成功大學一○○學年度碩士班招生考試試題 共 ユ 頁,第2頁 系所組別: 生物醫學工程學系乙組 考試科目: 電子學 考試日期:0219,節次:1 ## ※ 考生請注意:本試題 ☑可 □不可 使用計算機 Fig. 2 Fig. 3