系所組別：生物醫學工程學系乙組

考試科目：電磁學

1．Given the uniform line－charge density ρ_{l} for finite length L as shown in Fig．1，find the electric field intensity of P along the axis．（ 20% ）

Fig． 1
2．Write down the Poisson＇s equation and Laplace＇s equation in Cartesian coordinates，Cylindrical coordinates，and Spherical coordinates．（ 15% ）

3．Calculate the mutual inductance per unit length between two parallel two－wire transmission lines $A-A^{\prime}$ ， and $B-B$＇separated by a distance D as shown in Fig．2．Assume the wire radius to be much smaller than D and the wire spacing d ．(20%)

Fig． 2

4．A dielectric fiber of a transparent material is used to guide light under the conditions of total internal reflection．Determine the minimum dielectric constant of the guiding medium so that a wave incident on one end at any angle may be confined within the fiber until it emerges from the other end．（ 15% ）

5．Draw the diagram for an equivalent circuit of a differential length Δz of a two－conductor transmission lines．Define your parameters clearly．（15\％）

6．A TE_{10} wave at 10 GHz propagates in a brass（conductivity $=1.57 \times 10^{7} \mathrm{~S} / \mathrm{m}$ ）rectangular wave guide with inner dimensions of $1.5 \mathrm{~cm} \times 0.6 \mathrm{~cm}$ ，which is filled with some material $\left(\varepsilon_{r}=2.25, \mu_{r}=1\right.$ ，and loss tangent $=4 \times 10^{-4}$ ）．Determine（a）the phase constant，（b）the wave impedance，and（c）the attenuation constant due to the loss in the dielectric．（15\％）

