※ 考生請注意：本試題不可使用計算機

1．Give physical interpretations for the following terms：a）．boundary layer，b）．head loss，c）．Reynolds number．（12\％）

2．Write down the mathematical expression of the Bernoulli equation in a steady flow and give the basic assumptions for which the equation can be used．（12\％）Give an example relevant to the Bernoulli equation．（6\％）

3．The underwater tunnel in the San Diego Sea World is fabricated from reinforced glass formed in the shape of a parabola $\left(y=4-x^{2}\right)$ ．The length of the tunnel is 10 m ．Determine the total magnitude of the hydrostatic force that acts over the surface of the tunnel．The density of the water is $\rho_{w}=1000 \mathrm{~kg} / \mathrm{m}^{3}$ ．The table of geometric properties is attached below．（20\％）

系所組別：生物醫學工程學系甲組
※ 考生請注意：本試題不可使用計算機

4．The eye of a tornado has a radius R ．In the eye，the tornado flow field is approximated as solid body rotation while outside the eye the flow is a free vortex．The velocity field for the flow is ：

$$
u_{\theta}= \begin{cases}U_{\max } \frac{r}{R} & r \leq R \\ U_{\max } \frac{R}{r} & r>R\end{cases}
$$

Determine the pressure variation，$P(r)$ ，resulting from the tornado．Note that the pressure far from the tornado is atmospheric pressure，$P_{\text {atm }}$ ．（25\％）（Hint：the derivation can start from the Navier－Stokes equation in the polar coordinate．）

$$
\rho\left(\frac{\partial u_{r}}{\partial t}+u_{r} \frac{\partial u_{r}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{r}}{\partial \theta}-\frac{u_{\theta}^{2}}{r}+u_{z} \frac{\partial u_{z}}{\partial z}\right)=-\frac{\partial P}{\partial r}+\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r u_{r}\right)\right)+\frac{1}{r^{2}} \frac{\partial^{2} u_{r}}{\partial \theta^{2}}+\frac{\partial^{2} u_{r}}{\partial z^{2}}-\frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta}\right]+\rho f_{r}
$$

5．A cart hangs from a wire as shown in the figure below．Attached to the cart is a scoop of width W（into the page）which is submerged into the water a depth，h ，from the free surface．The scoop is used to fill the cart tank with water of density，ρ ．
a）．Show that any instant $V=V_{0} M_{0} / M$ where M is the mass of the cart and the fluid within the cart．（12\％）
b）．Determine the velocity，V ，as a function of time．（13\％）

