考試科目：電子學

※ 考生請注意：本試題不可使用計算機

1．A diode is made with following doping levels：$N_{A}=10^{16} \mathrm{~cm}^{-3}$ and $N_{D}=5 \times 10^{15} \mathrm{~cm}^{-3}$ ． Assume the intrinsic carrier concentration in silicon at 300 K is $1.5 \times 10^{10} \mathrm{~cm}^{-3}$ ．Determine the hole and electron concentrations on the two sides，respectively．（20\％）

2．In a full－wave rectifier experiment，a student wrongly swaps one of the diode as shown in Fig．1．Point out the wrongly swapped diode（5\％）and explain what happens（10\％）．（15\％）

Fig． 1
3．A voltage controlled current source is shown in Fig． 2 with the $K=20 \mathrm{~mA} / \mathrm{V}$ ．（a）Determine the value of R_{L} which is necessary to achieve a voltage gain of 15 ，and（b）If a resistance of R_{S} is placed in series with the input voltage source，determine $V_{\text {out }} / V_{\text {in }} .(20 \%)$

Fig． 2

系所組別：生物醫學工程學系乙組

※ 考生請注意：本試題不可使用計算機

4．Determine the input and output poles of the circuit as shown in Fig． 3 using Miller＇s theorem．Assume V_{A} is infinitely large and neglect other capacitances．（20\％）

Fig． 3

5．Draw the circuit for an operational amplifier based logarithmic amplifier（5\％），and explain with equations (10%) ．(15%)

6．Describe the concept of virtual ground for ideal operational amplifier．(10%)

