系所組別：生物醫學工程學系乙組

※ 考生請注意：本試題不可使用計算機

1．State the Gauss＇s theorem and Stokes＇s theorem both in equations and words．（20\％）

2．Given a potential function $V(x, y, z)=(\sin (\pi x / 4))(\sin (\pi y / 2)) \exp (-2 z)$ ，find（a）the magnitude and the direction of the electric field at the point $P(1, l, l)$ ，and（b）the magnitude of the electric field at P in the direction of origin．（20\％）

3．Consider two spherical conductors with radii a and b that are connected by a conducting wire．The distance of separation between the conductors is assumed to be very large in comparison to the radius of conductors．A total charge Q is deposited on the spheres．Find （a）the charges on these two spheres respectively，and（b）the electric field intensities at the sphere surfaces．(20%)

4．A current I flows in the inner conductor of an infinitely long coaxial line and returns via the outer conductor．The radius of the inner conductor is $r 1$ ，and the inner and outer radii of the outer conductor are $r 2$ and $r 3$ ，respectively．Find the magnetic flus density \boldsymbol{B} for all regions and plot the magnitude of \boldsymbol{B} versus r ．(20%)

5．Consider the plane waves in a lossy，conducting medium with the given parameters ω, σ, μ ， and ε ．Derive the general expressions of the attenuation（ α ）and phase constants (β) basing on the homogeneous vector Helmholtz＇s equation．（20\％）

