编號: 163 國立成功大學 103 學年度碩士班招生考試試題	共 2 頁,第1頁			
系所組別: 生物醫學工程學系甲組				
考試科目:工程力學	考試日期:0222,節次:1			
※考生請注意:本試題不可使用計算機。請於答案卷(卡)作答,於2	本試題紙上作答者,不予計分。			
1. Explain the following terms:				
(a) Statics and Dynamics. (3%)				
(b) Theorems of Pappus and Guldinus. (4%)				
(c) 1 st moment of an area and 2 nd moment of an area. (4%)				
(d) Perfectly-elastic, partially-elastic and perfectly-inelastic (or plast	tic) collisions (you may take the			

Derive a general expression for the normal force N₄ exerted by the smooth vertical wall on the uniform slender bar of mass m and length L. The mass of the cylinder is m₁, and all bearings are ideal. Determine the value of m₁ which makes (a) N₄=mg/2 and (b) N₄=0. (Notice: free body diagrams must be shown.) (20%)

two-body collision as an example). (5%)

3. The skier Michael Schumacher (mass m) has the velocity $v_A = v_0$ at point A of the cross country course (see the figure below). Although he tries hard not to lose velocity skiing uphill, he reaches point B with only the velocity $v_B = 2v_0/5$. Skiing downhill between point B and the finish C he again gains speed and reaches C with $v_C = 4v_0$. Between B and C assume that a constant friction force acts due to the soft snow in this region; the drag force from the air on the skier can be neglected. (a) Calculate the work done by the skier on the path from A to B (here the friction force is negligible). (b) Determine the coefficient of kinetic friction μ_k between B and C. (17%)

編號: 163	國立成功大學 103	學年度碩士班招生考試試題	共 2 頁,第2頁
系所組別:生物	醫學工程學系甲組		
考試科目:工程	力學		考試日期:0222,節次:1
※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。			

4. Determine the I_{max} , I_{min} and principal axes of the area (see the figure below) in terms of rotating angle θ_p . (Assume h > b) (25%)

5. The Formula 1 driver Rubens Barrichello drives a car of weight W = mg to slip from a hemi-sphere hill (radius r) without friction downwards (as shown in the figure). The motion starts at the highest point with an initial velocity v_0 . Determine at what location in terms of angle φ will the car lift-off from the hill? (22%)

