系所組別：生物㗨學工程學系甲組

考試科目：工程力學
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．Explain the following terms：
（a）Statics and Dynamics．（3\％）
（b）Theorems of Pappus and Guldinus．（4\％）
（c） $1^{\text {st }}$ moment of an area and $2^{\text {nd }}$ moment of an area．（4\％）
（d）Perfectly－elastic，partially－elastic and perfectly－inelastic（or plastic）collisions（you may take the two－body collision as an example）．（5\％）

2．Derive a general expression for the normal force N_{A} exerted by the smooth vertical wall on the uniform slender bar of mass m and length L ．The mass of the cylinder is m_{1} ，and all bearings are ideal．Determine the value of m_{1} which makes（a）$N_{\lambda}=\mathrm{mg} / 2$ and（b）$N_{\lambda}=0$ ．（Notice：free body diagrams must be shown．）（20\％）

3．The skier Michael Schumacher（mass m ）has the velocity $v_{A}=v_{0}$ at point A of the cross country course（see the figure below）．Although he tries hard not to lose velocity skiing uphill，he reaches point B with only the velocity $\nu_{B}=2 \nu_{0} / 5$ ．Skiing downhill between point B and the finish C he again gains speed and reaches C with $v_{C}=4 v_{0}$ ．Between B and C assume that a constant friction force acts due to the soft snow in this region； the drag force from the air on the skier can be neglected．（a）Calculate the work done by the skier on the path from \boldsymbol{A} to \boldsymbol{B}（here the friction force is negligible）．（b）Determine the coefficient of kinetic friction μ_{k} between B and C．（17\％）

（背面仍有題目，請緸耫作荅）

編號： 163
系所組別：生物醫學工程學系甲組
考試科目：工程力學
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

4．Determine the $I_{\max }, I_{\text {min }}$ and principal axes of the area（see the figure below）in terms of rotating angle $\boldsymbol{\theta}_{\boldsymbol{p}}$ ．（Assume $h>b$ ）（ 25% ）

5．The Formula 1 driver Rubens Barrichello drives a car of weight $W=m g$ to slip from a hemi－sphere hill （radius r ）without friction downwards（as shown in the figure）．The motion starts at the highest point with an initial velocity v_{0} ．Determine at what location in terms of angle φ will the car lift－off from the hill？ （22\％）

