编號: 178 國立成功大學 103 學年度碩士班招生考試試題 共 1 頁	,第1頁
系所組別:生物醫學工程學系甲、丁組	
考試科目:材料導論 考試日期:022	2,節次:2
※考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予	
1. Explain why covalently bonded materials are generally less dense than ion metallically bonded ones.	ically or (10%)
2. Explain the coordination number and the atomic packing factor of crystal structure.	(10%)
3. For a given material, explain why the grain boundary energy of a small angle grain lis less than for a high angle one.	ooundary (10%)
4. Describe and explain: (a) design stress, (b) safe stress, (c) standard half-cell, (d) copolymer, (e) invariant point	random (20%)
5. Compare the differences between elastic, anelastic, and plastic deformation behaviors. (10%)	
6. Explain why body-centered cubic ceramics are typically more brittle than h closed-packed metals.	exagonal (10%)
7. Describe the crystalline state in polymeric materials.	(10%)
8. (a) What is a hybrid composite? (b) List two important advantages of hybrid composinormal fiber composites.	sites over (10%)
9. Name the three factors that influence the degree to which martensite is formed th the cross section of a steel specimen.	roughout (10%)

.