※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．Consider the following system transfer function：

$$
G_{p}(\mathrm{~s})=\frac{1}{s+0.1}
$$

（a）An open－loop control is shown in Fig．1（a）．Design the control，$G_{c}(s)$ ，so that the combined plant and controller $G_{c}(s) G_{p}(s)$ has a pole at $p=-2$ ，and the output $y(t)$ tracks a constant reference signal $r(t)=r_{0} \mu(t)$ with zero steady－state error，where $e_{s s}=r_{0}-y_{s s} .(10 \%)$
（b）Now，suppose that the plant pole at $p=-0.1$ was modeled incorrectly and that the actual pole is $p=-0.2$ ． Apply the control design in part（a）and the input $r(t)=r_{0} \mu(t)$ to the actual plant，and compute the resulting steady－state error．（10\％）
（c）A feedback controller $G_{s}(s)=2(s+0.1) / s$ is used in place of open－loop control，as shown in Fig． 1 （b）． Verify that the closed－loop pole of the nominal system is at $p=-2$ ．（The nominal system has the plant pole at $p=-0.1$ ．）Let the input to the closed－loop system be $r(t)=r_{0} \mu(t)$ ．Verify that the steady－state error $e_{s s}=r_{0}-y_{s s}$ is zero．（ 10% ）

（a）

（b）

Fig． 1.

2．Consider a feedback connection as shown in Fig．1（b）．The impulse response of the system with transfer function $G_{p}(s)$ is $h(t)=(\sin t) \mu(t)$ ．
（a）Determine the transfer function $G_{c}(s)$ so that the impulse response of the feedback connection is equal to $(\sin t) e^{-t} \mu(t)$ ．(15%)
（b）For $G_{c}(s)$ equal to your answer in part（a），compute the step response of the feedback connection． （15\％）

背面仍有題目，請䊽續作答

※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

3．A proportional controller can be implemented by the use of a simple amplifier．However，PD，PI，and PID controllers require a compensating network．Often，this is achieved in analog with the use of operational amplifier（op amp）circuits．Consider the ideal op amp in Fig．2（a）．This op amp is an infinite impedance circuit element，so that $v_{a}=0$ and $i_{a}=0$ ．These relationships also hold when the op amp is embedded in a circuit，as shown in Fig．2（b）．
（a）Suppose that $R_{I}=1000 \Omega, R_{2}=2000 \Omega, C_{I}=C_{2}=0$ in Fig．2（b）．Compute the transfer function between the input v_{1} and output v_{2} ．（This circuit is known as an inverting circuit．）．（10\％）
（b）Suppose that $R_{I}=10 \mathrm{k} \Omega, R_{2}=20 \mathrm{k} \Omega, C_{I}=10 \mu \mathrm{~F}$ ，and $C_{2}=0$ in Fig．2（b）．The resulting circuit is a PD controller．Compute the transfer function of the circuit．（15\％）
（c）Suppose that $R_{I}=10 \mathrm{k} \Omega$ and $R_{2}=\infty$（removed from circuit），$C_{I}=200 \mu \mathrm{~F}$ and $C_{2}=10 \mu \mathrm{~F}$ in Fig．2（b）．the resulting circuit is a PI controller．Compute the transfer function of the circuit．（ 15% ）

（a）

（b）
Fig． 2

