第1頁，共2頁

※考生請注意：本試題不可使用計算機。請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．A basic differential amplifier circuit is shown in Fig．1．（a）Determine R_{E} and R_{C} such that i_{E} $=80 \mu \mathrm{~A}$ and $v_{O 1}=v_{O 2}=-0.25 \mathrm{~V}$ when $v_{1}=-1.0 \mathrm{~V}$ ，with $V_{B E}(\mathrm{on})=0.7 \mathrm{~V}$ and neglecting the base currents．（b）Using the obtained R_{E} and R_{C} in part（a），determine $v_{O 1}$ and $v_{O 2}$ when $v_{1}=$ -1.3 V and $\nu_{1}=0.7 \mathrm{~V}$ ，respectively．（ 20% ）

2．Design an NMOS pass transistor logic circuit to perform the function $Y=A+B(C+D)$ ． Assume that both variable and its complement are available as input signals．（10\％）

3．An analog signal in the range 0 to 5 V is to be converted to a digital signal using an A / D converter for a quantization error less than 1% ．Please determine the required number of bits and the input voltage value that represents 1 LSB．（10\％）

4．The op－amp in the circuit in Fig． 2 has an open－loop differential voltage gain of $A_{d}=10^{4}$ ． Assume the op－amp is ideal one．Determine（a）the closed－loop voltage gain $A_{o}=V_{o} / V_{s}$ ， and（b）the resistances for $R_{i f}$ and $R_{o f}$ as shown in Fig．2．（20\％）

5．An equivalent high－frequency small－signal circuit of a MOSFET with a load resistance R_{L} is shown in Fig．3．Give your derivation in detail for Miller capacitance，and cutoff frequency of this MOSFET．（20\％）

6．The transistor parameters of the circuit as shown in Fig． 4 are $R_{S}=2 \mathrm{k} \Omega, V_{T P}=-1.2 \mathrm{~V}, k_{p}^{\prime}=$ $40 \mu \mathrm{~A} / \mathrm{V}^{2}$ ，and $\lambda=0$ ．（a）Design the transistor width－to－length ratio such that $I_{D Q}=1.5 \mathrm{~mA}$ ， and（b）find its small－signal voltage gain．（20\％）

第2頁，共2頁

Fig． 1

Fig． 3

Fig． 4

