編號: 157

國立成功大學 106 學年度碩士班招生考試試題

系 所:生物醫學工程學系

考試科目:工程力學

考試日期:0213,節次:1

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. Explain the following terms: (20%)
 - (a) Beating phenomenon. (4%)
 - (b) Conservative force. (4%)
 - (c) Principle of linear impulse and momentum. (4%)
 - (d) Principle of virtual work. (4%)
 - (e) Coulomb's friction. (4%)
- 2. A 10-kg block is suspended from a spring of constant k = 4.0 kN/m, as shown in Figure 1. At time t = 0, it has a downward velocity of 1 m/s as it passes through the position of static equilibrium.

Assume the gravity $g = 10 \text{ m/s}^2$. Determine the followings: (30%)

- (a) The static spring deflection δ_s . (5%)
- (b) The natural frequency of the system in both rad/sec (ω_n) and cycles/sec (f_n). (5%)
- (c) The system period τ . (5%)
- (d) The displacement of x as a function of time, x = x(t), where x is measured from the position of static equilibrium. (5%)
- (e) The maximum velocity attained by the mass. (5%)
- (f) The maximum acceleration attained by the mass. (5%)

Figure 1

3. It is desired to drive a pile of weight $W_p = 1800$ kg into the ground by dropping a hammer of weight $W_H = 200$ kg at a distance of h = 5 m onto the pile, as shown in Figure 2. Determine the distance that the pile is driven into the ground by a single blow of the hammer, if it is assumed that the ground provides a constant resisting force of 3000 kg. Assume the impact to be perfectly plastic and the gravity $g = 10 \text{ m/s}^2$. (20%)

編號: 157

國立成功大學 106 學年度碩士班招生考試試題

系 所:生物醫學工程學系

考試科目:工程力學

考試日期:0213, 節次:1

第2頁,共2頁

- 4. A slender bar shown in Figure 3 has a uniform cross section and mass \mathbf{m} . The bar is released at rest when vertical ($\theta = 0$) and rotate in a vertical plane under the action of gravity. The coefficient of static friction between the bar's endpoint A and the horizontal surface is μ . Determine the followings: (15%)
 - (a) The static friction exerted on the bar's endpoint A. (5%)
 - (b) The normal force exerted on the bar's endpoint A. (5%)
 - (c) The coefficient of static friction μ when the bar begins to slip. (5%)

5. The hoop shown in Figure 4 is cast on the rough surface such that it has and angular velocity $\omega = 10$ rad/s and an angular deceleration $\alpha = 5 \,\text{vel/s}^2$. Also, its center has a velocity of $V_0 = 20$ m/s, and a deceleration $a_0 = 10$ m/s². Determine the acceleration of point A at this instant. (15%)

Figure 4

