系 所：生物醫學工程學系
考試科目：工程力學

第1員，共2頁

※ 考生請注意：本試題可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．Explain the following terms：（ 20% ）
（a）Mathematical form of＂center of mass＂and＂center of gravity＂．（5\％）
（b）D＇Alembert＇s principle．（5\％）
（c）Radius of gyration．（5\％）
（d）Conservation of angular momentum．（5\％）

2．A block shown in Figure 1 of mass M traveling down the rough incline，and the coefficient of kinetic friction is μ ．Determine the location \mathbf{C} of the effective normal force N ．The effective normal force is located at the centroid of the nonuniform pressure distribution which the incline exerts on the bottom surface of the block．（10\％）

Figure 1

Figure 2

3．The $10-\mathrm{kg}$ block A is suspended by the cable that is securely wrapped around the pulley B ，as shown in Figure 2．At certain instant，block A drops at speed of $5 \mathrm{~m} / \mathrm{s}$ ，which applies a couple C to the pulley causing block A to stop after dropped for 3 m ．Please determine the amount of couple C applied．（10\％）

4．In Figure 3，a slider block m is connected with two springs of spring constant k_{A} and k_{B} ， respectively．Assume each spring is displaced from each of its endpoint with $X_{A}=X_{A} \cos \omega t$ and x_{B} $=X_{B} \cos \omega t$ ．Please（1）derive the differential equation of motion for the slider block m ；（2）solve the steady－state vibration of the slider block．（20\％）

系 所：生物醫學工程學系
考試科目：工程力學

第2頁，共2頁

Figure 3

5．A cylinder bar $A B D$ of radius $R=100 \mathrm{~mm}$ and mass $M=100 \mathrm{~kg}$ is supported by a thrust bearing D so that $A B D$ can freely rotate along its central axis，as shown in Figure 4．Bar sleeve C with negligible mass is controlled by internal mechanism that allows C sliding along $B D$ ，so that the connecting rod BP and CP, BQ and CQ can vary between an angle θ from 0° to 180° ．Four connecting rods are equal length and weight of uniformed slender rod，with length $\mathrm{I}=1000 \mathrm{~mm}$ ， mass $m=10 \mathrm{~kg}$ ，and the thickness can be ignored．Assume when $A B D$ is located at $\theta=180^{\circ}$ ， the entire system can be considered as a uniformed cylinder．At the beginning of $\theta=0{ }^{\circ}$ ，the system is rotating at $1 \mathrm{rad} / \mathrm{s}$ around the ABD center axis．Please（1）prove the mass moments of inertia I_{z} of rod $A B D$ is equal to $0.5 \mathrm{mR}^{2}$ ；（2）determine the speed of the system when the internal mechanism causes C to slide to $\theta=180^{\circ}$ ．（20\％）

Figure 4

Figure 5

6．In Figure 5，the disk A is 20 kg and with radius of 50 cm rotates without slipping．The center of the disk is connected to a bar BC that has a mass of 10 kg and length 150 cm ．The other side of the bar $B C$ is connected to a collar C sliding along a fixed vertical shaft．Assume at $\theta=45^{\circ}$ ，the collar C is sliding downward with velocity $V_{C}=120 \mathrm{~cm} / \mathrm{s}$ ．Please determine the velocity V_{C} of the collar C when $\theta=30^{\circ}$ ．（ 20% ）

