編號: 156

國立成功大學 108 學年度碩士班招生考試試題

系 所:生物醫學工程學系

考試科目:流體力學

考試日期:0224, 節次:2

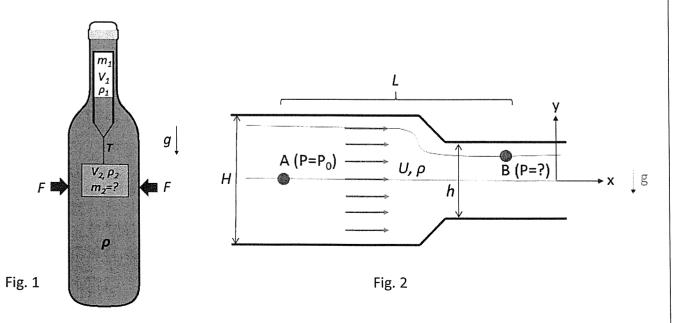
第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. Define the following terms: (15%)

(a) Control volume

(b) Stokes flow


(c) Lagrangian perspective

(d) Kinematic viscosity

(e) Definition of fluid

- 2. You are assigned to design a Cartesian diver. An upside-down tube connecting to an unknown mass m_2 is inside a plastic bottle (Fig. 1). Given that the initial volume inside the tube is V_1 , the volume of the unknown mass is V_2 , and the mass of the tube is m_1 . (a) What is the tension of the cable between the tube and the unknown mass? (b) What is the maximum mass (m_2) that the tube can bear in order to float at the top of the bottle? Express the mass in terms of m_1 , V_1 , and V_2 . (c) Why does the tube drops after the bottle is deformed by an external force? (20%)
- 3. An ideal fluid of density ρ is flowing at a uniform velocity of U in a straight pipe flow (Fig. 2). Assume the potential difference is negligible.
 - (a) list the four assumptions necessary for the Bernoulli equation. (6%)
 - (b) Derive an expression for the pressure at B when the pressure at A is P_0 . (10%)
 - (c) Show that the Bernoulli equation fails when the velocity profile turns parabolic due to viscosity. (Hint:

vorticity=0;
$$u_{Ax} = U[1 - \left(\frac{2y}{H}\right)^2])$$
 (8%)

編號: 156

國立成功大學 108 學年度碩士班招生考試試題

系 所: 生物醫學工程學系

考試科目:流體力學

考試日期:0224, 節次:2

第2頁,共2頁

4. In a uniform flow, a control volume is drawn as shown in Fig. 3.

(a) Show the mass fluxes through surface A and surface B are identical (by conservation of mass). (10%)

(b) Why is there no difference between both of the mass fluxes? (7%)

5. An incompressible, Newtonian liquid of density ρ and dynamic viscosity μ is sheared between concentric cylinders as shown in Fig. 4. The inner cylinder radius is R_i and the outer cylinder radius is R_o . Determine the velocity profile (u_{θ}) for the liquid in the gap when the inner cylinder rotates at a constant angular speed of ω . All boundaries are in no-slip conditions and gravity is perpendicular to the paper. The continuity and Navier-Stokes equations in cylindrical coordinates are given below. (24%)

$$\begin{split} \frac{1}{r}\frac{\partial(ru_r)}{\partial r} + \frac{1}{r}\frac{\partial u_\theta}{\partial \theta} + \frac{\partial u_z}{\partial z} &= 0 \\ \rho\left(\frac{\partial u_\theta}{\partial t} + u_r\frac{\partial u_\theta}{\partial r} + \frac{u_\theta}{r}\frac{\partial u_\theta}{\partial \theta} - \frac{u_ru_\theta}{\partial r} + u_z\frac{\partial u_\theta}{\partial z}\right) &= -\frac{1}{r}\frac{\partial p}{\partial \theta} + \mu\left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u_\theta}{\partial r}\right) - \frac{u_\theta}{r^2} + \frac{1}{r^2}\frac{\partial^2 u_\theta}{\partial \theta^2} - \frac{2}{r^2}\frac{\partial u_r}{\partial \theta} + \frac{\partial^2 u_\theta}{\partial z^2}\right] + \rho g_\theta \end{split}$$

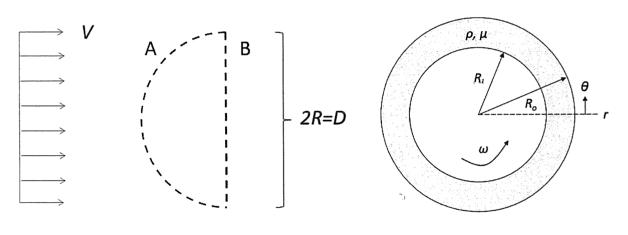


Fig. 3

Fig. 4