國立成功大學 111學年度碩士班招生考試試題

編 號: 153

系 所: 生物醫學工程學系

科 目: 工程力學

日 期: 0219

節 次:第2節

備 註:可使用計算機

編號: 153

國立成功大學 111 學年度碩士班招生考試試題

系 所:生物醫學工程學系

考試科目:工程力學

考試日期:0219,節次:2

第1頁,共2頁

- ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. Explain the following terms: (20%)
 - (a) The mathematical form of "center of mass" and "center of gravity." (4%)
 - (b) D'Alembert's principle. (4%)
 - (c) Beating phenomenon. (4%)
 - (d) Conservative force. (4%)
 - (e) Conservation of angular momentum. (4%)
- 2. The hoop shown in Figure 1 is rotating on a rough surface and has an angular velocity $\omega = 50$ rad/s and an angular deceleration $\alpha = 10$ rad/s². The center of the hoop travels at a velocity of $V_0 = 10$ m/s and a deceleration $a_0 = 20$ m/s². Determine the acceleration of point X at this instant. (20%)

3. In Figure 2, the disk X is 50 kg and with the radius of 0.3 m rotates without slipping. The center of the disk is connected to a bar YZ with a mass of 5 kg and a length of 1.2 m. The other side of the bar YZ is connected to a collar Z sliding along a fixed vertical shaft. Assume at θ = 45°; the collar Z is sliding downward with velocity V_Z = 150 cm/s. Please determine the velocity V_Z of the collar Z when θ = 10°. (20%)

國立成功大學 111 學年度碩士班招生考試試題

編號: 153

所:生物醫學工程學系

考試科目:工程力學

考試日期:0219,節次:2

第2頁,共2頁

- 4. In Figure 3, two small balls X and Y with the same mass of 0.5 kg are hung up with equal-length and light-weight ropes. Released from still at the position with the height h = 0.5 m shown in the figure, the ball X starts to swing downward. (20%)
 - (a) Immediately before the impact, what is the speed of the ball X? (6%)
 - (b) Assuming that the collision is a center collision, what equation should be used to find the speed of each ball after the collision? (6%)
 - (c) Assuming that the collision is plastic, what is the maximum ascent height of the two balls after the collision? (8%)

- 5. The tennis ball has a mass of 0.2 kg and enters the racket, as shown in Figure 4, with an initial velocity of $\vec{V}_{in} = 5\vec{\imath} + 2\vec{\jmath} 10\vec{k}$. The player swings the racket to hit the ball that leaves the racket at the final speed $\vec{V}_{out} = 8\vec{\imath} + 3\vec{\jmath} + 20\vec{k}$. (20%)
 - (a) What is the impulse \vec{I} exerted by the racket on the tennis ball during the stroke? (10%)
 - (b) Suppose the time of hitting the ball is 0.01 second. What is the average force F borne by the tennis ball? (10%)

