國立成功大學 111學年度碩士班招生考試試題

編 號: 154

系 所: 生物醫學工程學系

科 目:流體力學

日期:0219

節 次:第2節

備 註: 可使用計算機

編號: 154

國立成功大學 111 學年度碩士班招生考試試題

系 所:生物醫學工程學系

考試科目:流體力學

考試日期:0219,節次:2

第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. ____ Which line in the following figure represents the Newtonian fluid? A) a B) b C) c D) d E) a & c F)None. (5%)

- According to the Bernoulli's Equation, with no energy loss, what will happen to the blood flow rate
 and pressure when a vessel diameter shrinks? (5%) A) velocity decreases but pressure increases; B) both
 velocity and pressure increase; C) both velocity and pressure decrease; D) velocity increases but pressure
 decreases.
- Which description of Reynolds number is incorrect? (5%) A) Re<<1 Creeping flow B) Re<2100 Laminar flow C) Re>4000 Turbine flow D) 2100
- 4. ____ In the Hagen Poiseuille flow, what factor may alter the flow rate? (5%) A) pressure difference B) tube diameter C) tube length D) All of the above.
- Given that drag coefficients for the following geometries are under same flow velocity (U), fluid density (ρ), and Reynolds number (Re=10⁵). Determine their drags in an order from high to low. (b=1) (8%)

			U	
Reference area A (b = length)	Drag coefficient $C_D = \frac{Q_0}{\frac{1}{2} \rho U^2 A}$	Reynolds number Re = ρUDIμ	\rightarrow	(a) 0.17 1
A = bD	R/D C _D 0 2.2 0.02 2.0 0.17 1.2 0.33 1.0	Re = 10 ⁵	$\stackrel{\cdot}{\rightarrow}$]
A = bD	R/D C _D C 0 1.4 2.1 0.02 1.2 2.0 0.08 1.3 1.9 0.25 1.1 1.3	Re = 10 ⁵	\rightarrow \rightarrow	(b) 1 0.25
A = bD	## CD CD SO.1 1.9 0.5 2.5 0.65 2.9 1.0 2.2 2.0 1.6 3.0 1.3	Re = 10 ⁵	\rightarrow	(c) 0.25
	A (b = length) A = bD A = bD	Reference seas A $C_D = \frac{9}{\frac{1}{2}p\ell^2A}$ $C_D = \frac{9}{\frac{1}{2}p\ell$	Remote a sea $C_D = \frac{Q}{\frac{1}{2}\rho U^2 A}$ Remote a number Remote a number	

6. The uniform swamp gate has a mass of 4 Mg and a width of 1.5 m (Fig. 1). Determine the angle θ for equilibrium if the water rises to a depth of d = 1.5 m. (Assume all pressures are gage pressures and ρ_w is

系 所:生物醫學工程學系

考試科目:流體力學

考試日期:0219,節次:2

第2頁,共2頁

1000 kg/m3.) (25%)

Fig. 1

7. The horizontal flow confined by the walls is defined by the stream function $\psi = \left[4r^{4/3}\sin\left(\frac{4}{3}\theta\right)\right] \text{ m}^2/\text{s}$, where r is in meters (Fig. 2). (A) Express the velocity in terms of r and θ . (Hint: $u_r = \frac{1}{r}\frac{\partial\psi}{\partial\theta}$; $u_\theta = \frac{1}{r}\frac{\partial u_\theta}{\partial\theta}$) (B) Is the flow continuous or discontinuous? Prove it. (Hint: continuity $\frac{1}{r}\frac{\partial(ru_r)}{\partial r} + \frac{1}{r}\frac{\partial u_\theta}{\theta} = 0$) (C) Determine the difference in pressure between the two points A and B (Hint: Bernoulli equation). (27%)

Fig. 2

8. The barge is being loaded with an industrial waste liquid having a density of p over a time period of Δt (Fig. 3). If the average velocity of flow out of the pipe (radius is r) is V_A, determine (A) the force in the tie rope needed to hold the barge stationary and (B) the buoyancy needed to support the barge before it sinks. (Notice: A Free Body Diagram and a Control Volume must be drawn.) (20%)

Fig.3