國立成功大學

114學年度碩士班招生考試試題

編 號: 112

系 所: 生物醫學工程學系

科 目: 工程數學

日 期: 0210

節 次:第1節

注 意: 1.不可使用計算機

2. 請於答案卷(卡)作答,於 試題上作答,不予計分。 Please write the detailed solutions to the following questions.

- 1. (35 pts) Solve the following differential equations.
 - (1) (15 pts) $[D^3 + D^2 + 2D 4I]y = x\cos 2x + xe^x$
 - (2) (20 pts) $[D^2 + 3D + (2 + \lambda)I]y = 0$, y(-1) = y(1) = 0.
- 2. (25 pts) Let f and g be functions with continuous first and second order partial derivatives on a region D bounded by a smooth surface S. Show that
 - (1) (15 pts)

$$\iint\limits_{S} (f \nabla g) d\vec{\sigma} = \iiint\limits_{D} (f \nabla^{2} g + \nabla f \cdot \nabla g) \, dV$$

(2) (10 pts)

$$\iint\limits_{S} (f \nabla g - g \nabla f) d\vec{\sigma} = \iiint\limits_{D} (f \nabla^{2} g - g \nabla^{2} f) dV$$

3. (25 pts) Solve the partial differential equation:

$$U_{tt}(x,t) = 15U_{xx}(x,t)$$
, for $x \in \mathbb{R}$, $t > 0$
 $U(x,0) = \cos \pi x$, $U_t(x,0) = e^{-2x} \sin x$, for $x \in \mathbb{R}$

4. (15 pts) The Fourier Transform are defined as follows:

$$F(\omega) = \mathcal{F}[f] = \int_{-\infty}^{+\infty} f(t)e^{-iwt}dt,$$

 $F(\omega)$ is also called the frequency response of the signal f(t). Suppose we have a system

$$y'(t) + 5y(t) = \int_{-\infty}^{+\infty} x(v)z(t-v)dv - 3x(t),$$

where $z(t) = \cos(2t) + 5\delta(t)$.

- (1) (8 pts) Find the frequency response of the system, i.e., $H(\omega) = \frac{Y(\omega)}{X(\omega)}$.
- (2) (7 pts) Determine the impulse response of the system, i.e., h(t).