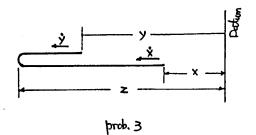

國立成功大學

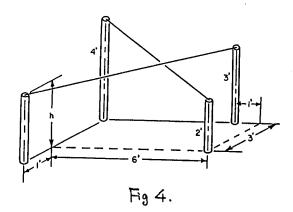
1. (20%) The origins of the two coordinate systems $\bar{X}_1\bar{X}_2\bar{X}_3$ and $X_1X_2X_3$ coincide as shown in Figure. Assume that the axes of these two systems are initially parallel. Let F be the position vector of point \bar{Q} whose coordinates are assumed to be fixed in the $\bar{X}_1\bar{X}_2\bar{X}_3$ coordinate system. Let the reference $\bar{X}_1\bar{X}_2\bar{X}_3$ rotate an angle θ about the axis OC. As the result of this rotation, point \bar{Q} is translated to point Q. The position vector of point Q in the $X_1X_2X_3$ coordinate system is denoted by the r. v is a unit vector along the axis of rotation OC. Derive the transformation that defines the relative orientation between these two coordinate systems,


 $\mathbf{r} = \mathbf{\bar{r}} + (\mathbf{v} \times \mathbf{\bar{r}}) \sin \theta + 2[\mathbf{v} \times (\mathbf{v} \times \mathbf{\bar{r}})] \sin^2 \frac{\theta}{2}$

- 2. (20%) Let us suppose that the disk can be given by any desired rotational motion by a motor (not shown) attached to its axis. The string to which m is attached is wrapped around and fastened to the disk. The angular position of this disk is given by α , measured from the fixed X axis to a line drawn on the face of the disk. Angular position of the string (assumes always to be tangent to the pulley) is given by θ . r_0 is the initial length of the string as indicated. For mass m,
 - a. What is the kinetic energy T?
 - b. What is the generalized force F_{θ} ?
 - c. Construct Lagrange's equation of motion in terms of θ .

prob. 2

3. (20%) We realize the whip as an inextensible uniform string with no bending stiffness. Let it be arranged in a straight line as in Figure. It is double in the manner shown. The distance of one end of the string from some fixed datum is x, and its velocity is \dot{x} , that of the other end is y, and its velocity is \dot{y} . The kink is a distance z from the datum and the rope is of length l. The kinked string is initially in a straight line and the velocities \dot{x} and \dot{y} also lie in this line. We are given


$$x=x_0-vt,$$

where v > 0 is a constant. Discuss the motion; in particular, explain what happens when the string straightens out.

214

國立成功大學79 學年度研究的人學考試(互程力學試題)第2頁

4. (20%) Two wires are attached to vertical posts, as shown in Fig. 4. Assuming that the wires are straight, determine the value of h for which the shortest distance between the wires is one foot.

5. (20%) A thirty-four pound weight is supported by a cable which is wound on a fixed horizontal drum and is attached to a wall, as shown in Fig. 5, The coefficient of friction for the drum and cable has the value 0.2. Determine the reaction of the cable on the wall.

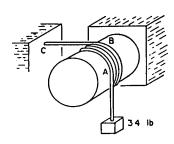


Fig.5.