249

國立成功大學八十一學年度於八學考試(互程數學試題) #/頁

1. (15%) Solve the differential equation with initial conditions y(0) = 0 and y'(0) = 0

$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = f(t)$$

where the function f(t) is shown in Fig. 1. (Hint: Using Laplace transformation)

2. (10%) Let the matrix

$$A = \begin{bmatrix} 1 & -4 \\ 1 & 1 \end{bmatrix}$$

Find the eigenvalues, eigenvectors and its inverse matrix.

3. (15%) Find the Laplace transformation of the following function

4. (10%) Find the mean and variance of discrete random variable X having the probability function f(-1) = 0.1, f(0) = 0.1, f(1) = 0.7 and f(2) = 0.1.

5. (12%) Evaluate

$$I = \int_0^{2\pi} \frac{d\theta}{3 - 2\cos\theta}$$

6. (13%) Show that u(x,y) = x(1-y) is harmonic for all x and y and find the conjugate function v(x,y). Find the function f(z) = u + iv and write it in terms of z.

7. (12%) Suppose that $\Phi(x,y,z)$ satisfies Laplace's equation $\nabla^2 \Phi = 0$ everywhere within a region \Re . Show that the flux of grad Φ from \Re vanishes.

8. (13%) Determine the surface area of the paraboloidal shell given by

$$z = x^2 + y^2, \quad 0 \le z \le 1.$$

If the mass per unit area of the shell is proportional to the height z, determine the total mass of the shell.

Some Functions f(t) and Their Laplace Transforms $\mathcal{L}(f)$

	f(t)	$\mathfrak{L}(f)$		f(t)	$\mathcal{L}(f)$
1	1	1/s .	6	eat	$\frac{1}{s-a}$
2	ı	1/s²	7	cos ωt	$\frac{s}{s^2+\omega^2}$
3	t²	2!/s³	8	sin ωt	$\frac{\omega}{s^2 + \omega^2}$
4	$(n = 1, 2, \cdots)$	$\frac{n!}{s^{n+1}}$	9	cosh <i>at</i>	$\frac{s}{s^2-a^2}$
5	(a positive)	$\frac{\Gamma(a+1)}{s^{a+1}}$	10	sinh <i>at</i>	$\frac{a}{s^2-a^2}$