國立成功大學 82 學年度医2所硬地 試(電子学 試題)

- (1) In the circuit shown in Figure 1, the transistor used for Q1 and Q2 has the $\beta_F = 200.(15\%)$
 - With v₁=v₂=0, determine the bias currents I_{CQ} and I_{BQ}, and the output voltages v_{o1} and v_{o2}. Evaluate A_{DM}, A_{CM}, and the CMRR. Determine R_{id} and R_{ic}.

 - Design a current mirror to replace the 14.3-K Ω resistance to establish the same bias currents, and find the CMRR.
- (2) Figure 2 shows the general form of an oscillator circuit.(20%)
 - Draw the equivalent circuit and determine the return ratio.
 - (b) Draw the Colpitts oscillator, determine its oscillation frequency, and explain its
 - operation.
 (c) Repeat (b) with the Hartley oscillator.
- (3) In the circuit shown in Figure 3, it is assumed that $R_D >> r_{\pi_1}$, $r_d >> r_{\pi_2}$, $\beta_0 >> 1$, and $\mu >> 1.(15\%)$
 - Determine $A_{v1}=v_{o1}/v_s$.
 - (b) Determine A_{v2}=v_{o2}/v_s.
- (4) Assuming that the op-amps in Figure 4 are all ideal, find the $Z_{in}(j\omega)$.(15%)
- - (a) Draw the block diagram of a successive approximation type of analog-to-digital (A/D) converter. Explain the operation principle.
 - Compare four different types of A/D, successive approximation, integrating, flash, and V/F counting converters, in speed, resolution, noise immunity, and
- (6) Figure 5 shows the circuit of a low-pass Butterworth filter.(20%)
 - Determine the v₀/v_i.
 - Explain the aliasing phenomenon during data sampling.
 - Assuming that a bio-signal with frequency bandwidth 0-200 Hz, choose the appropriate sampling rate. Utilize the Butterworth filter, shown in Figure 5, to design an anti-aliasing filter. (R=100 K Ω)

Figure 4

Figure 5

Figure 1

Figure 2

Figure 3