

國立成功大學入十二學年度歷2程研 考試(控制2程

20% 1. A device with low output impedance is shown below in cascade with a low pass filter and a preamplifier. The amplifier has high input impedance with a gain of one and is used for adding the signals as shown. Describe the procedure to select a value of capacitor so that the transfer function $V_0(s)$ / $V_i(s)$ has a damping ratio of 0.707, and finding the transfer function.

- 20% 2. A system is described as $\dot{x}(t) = A x(t) + b u(t)$. We can use the state feedback u(t) = k x(t) + r(t)to assign the eigenvalues of the system arbitrarily. (a)Prove the property of controllability does not change under state feedback. (that is (A,b) is controllable if only if (A+bk,b) is controllable.(b) Is this still true in observality through state feedback? explain your reasons!
- 30% 3. Given the following feedback control system, where the plant dynamics are described by the following differential equation:

$$\ddot{c}(t) + 7 \ddot{c}(t) + 10 \dot{c}(t) = u(t)$$

- a. Find G (s)
- b. Plot the locus of roots of the closed-loop system as K is varied from 0 to
- c. Find the range of K for which the closed loop is stable.
 d. If one of the closed-loop roots is at s = -6, for K=24, find the other two roots.
- e. Using the dominant roots determined in part d, find the damping ratio.

國立成功大學八十二學年度逐第2程研考試(控制2程(2)試題)第2頁

30% 4. Consider the linear system

$$\dot{x}(t) = A x(t) + B u(t) \qquad \text{where } A = \begin{bmatrix} 3 & 0 \\ 1 & 4 \end{bmatrix}$$

$$y(t) = C x(t) + D u(t) \qquad \text{and } D = \begin{bmatrix} 1 \end{bmatrix}.$$

a. If
$$B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $C = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ find the system's transfer function T(s) in its simplest form.

- b. (True or False) The system is stable.
 - (True or False) The system is controllable. (True or False) The system is observable.
- c. An input-output differential equation for this system can be written in the form:

$$\dot{y}(t) + \alpha_1 \quad y(t) = \alpha_2 \quad \dot{u}(t) + \alpha_3 \quad u(t)$$

Find
$$\alpha_1 = \alpha_2 = \alpha_3 =$$

- d. Compute the exponential matrix $\,e^{At}\,$ for this system.
- e. If $e^{At} = Z_1 e^{\lambda_1 t} + Z_2 e^{\lambda_2 t} e^{At} = Z_1 e^{\lambda_1 t} + Z_2 e^{\lambda_2 t}$, find the matrices Z_1 and Z_2
- f. Does the impulse response completely specify the dynamics of the state model? Why or Why not?