國立成功大學八十三學年度醫工所碩均考試(工程力學 試題)第1

静力學四題,任50%

- A rectangular concrete foundation mat supports four column loads as shown. Determine the magnitude and point of application of the resultant of the sour loads.
- The bent rod DEF fits into the bent pipe ABC as shown. Neglecting the effect of friction, determine the reactions at A and F due to the 360-N force applied at B.

- Locate the centroid of the plane area shown. 3.
- The axis of the three-hinged arch ABC is a parabola with vertex at B. Knowing that P = 72.8 kips and Q = 109.2 kips, determine (a) the components of the reaction at C, (b) the components of the force exerted at B on segment AB.

動力學三題:

- 5. A disk of mass m and radius r rotates at a constant rate ω_2 with respect to the arm OA, which itself rotates at a constant rate ω_1 about the y axis. Determine the force couple system representing the dynamic reaction at O. (figure 5, 15%)
- 6. A uniform disk of radius r and mass m is supported by a frictionless horizontal table. Initially the disk is spinning freely about its mass center G with a constant angular velocity ω_1 . Suddenly a latch B is moved to the right and is struck by a small stop A welded to the edge of the disk. Assuming that the impact of A and B is perfectly plastic, determine the angular velocity of the disk and the velocity of its mass center immediately after impact. (figure 6, 15%)
- 7. At the swing phase of a gait (步態) analysis the dimension configuration is shown as in figure 7 and the numerical values are given in table 1. Determine the reaction system at knee center O. (20%)

Figure 6.

Figure 5.

Description	Symbol	Value
Knowns		
Ground reaction		
Vertical	F°.	700 N
Horizontal	F°,	150 N
Shank weight	•	
Vertical	F".	28 14
Inertial forces	•	
Shank mass (m) × vertical acceleration (a.)	ma,	1.3 N
Shank mass (m) × horizontal acceleration (a _h)	nia,	0.7 N
Inertia (/) x angular acceleration (n)	la .	0.0G Nn
Lover arms		
Floor to knee center	ď,	0.4 m
Shank mass center to knee center	de	0.1 m
Horizontal distance, shank mass center to point O	d ₃	0.03 m
Unknowns	-	
External reaction		
Verlical (Eq. 2)	(F'v)	
Horizontal (Eq. 3)	(F'h)ast	
Momant (Eq. 4)	(M o)	

Table 1.