國立成功大學八十三學年度医工作派大學試(定子学 試題)第/頁

- (15 %) Explain the following terminologies:
 (a) Wheatstone bridge circuit; (b) active filter; (c) TTL; (d) logarithmic amplifier; (e) propagation delay.
- 2. (20 %) Please design experiments to measure input impedance, output impedance, frequency response, and CMRR of an OP-AMP. Describe the setup, principle, and procedures.
- 3. (15 %) A cardiologist in National Cheng Kung University Hospital wishes to setup an automatic system for acquiring electrocardiography (ECG) (electrical signal of heart). Assumed the amplified ECG amplitude ranges between +5 V and -5 V and frequency ranges from dc to 100 Hz. A minimum resolution of 2.5 mV is required.
 - (a) Please give the specifications for A/D converter of your choice, such as type, resolution, sampling rate, noise, cost, etc., and explain the reasons.
 - (b) Design a low-pass filter for anti-aliasing purpose.
- 4. The transistor in the circuit shown in Figure 1 has the following low-frequency small-signal parameters: $g_m=40\text{mS}$, $\beta_0=150$, $r_0\to\infty$, and $r_b\simeq0$. Determine the small-signal equivalent resistance R_{eq} .(15%)
- 5. The FETs in the circuit shown Figure 2 are identical and have g_m =2mS, and r_d =20k Ω . The circuit parameters are R_D =12k Ω , R_G =500k Ω , R_s =50 Ω , and R_F =5k Ω . Determine the A_F and R_{OF} .(20%)
- 6. For a Wien-bridge oscillator as shown in Figure 3, Determine the frequency of the oscillation and the ratio of R_1/R_2 for oscillation.(15%)

Figure 1.

Figure 2

Figure 3