## 國立成功大學八世學年度医工門研究考試(工程投灣 試題)第一頁

1. Evaluate the following surface integral

$$I = \iint\limits_{S} (x^3 dy dz + x^2 y dx dz + x^2 z dx dy)$$

Where S is the surface consisting of the cylinder  $x^2 + y^2 = a^2$   $(0 \le z \le b)$  and the circular disk z = 0 and without disk z = b  $(x^2 + y^2 \le a^2)$ . That is, the surface like a sugar can without the upper cover. (Hint: Using Divergence thorem of Gauss. However, the surface S is not a closed surface. Be careful!)(20 points)

- 2. For a 2 x 2 matrix A,
  - (a) Find a matrix A, let the eigenvectors are orthogonal.(5 points)
  - (b) Find A such that y = Ax is a counterclockwise rotation through 30° in the plane. (5 points)
  - (c) Show the eigenvectors associated with distinct eigenvalues are linearly independent. (5 points)
- 3. Describe the following terminologies;(3 points each)
  - (a) Simple curve.
  - (b) Simple connected domain or Simple connected region.
  - (c) Analytic function
  - (d) Stoke's theorem
  - (e) Directional derivative

4. (15%) Solve two unknowns  $x_1$  and  $x_2$  in two simultaneous equations as below

$$\dot{x}_1 + 2x_1 - 2\dot{x}_2 + 3x_2 = 4$$

$$2\dot{x}_1 + x_1 + \dot{x}_2 - x_2 = 2t$$

when 
$$t = 0^+$$
,  $x_1 = 1$ ,  $x_2 = -2$ .

- 5. (15%) What is the Residue Theorem? Evaluate the definite integrals  $\int_{-\infty}^{\infty} \frac{x^2 dx}{1+x^6}$  by the method of residues.
- 6. (20%) If z = z(y, t) is a displacement, the model to describe the vibration of a flexible string of length l is as follows

$$z_{tt} = c^{2} z_{yy}, \ 0 < y < l, \ 0 < t$$

$$z_{y}(0, t) = 0, \ z_{y}(l, t) = 0, \ 0 < t$$

$$z(y, 0) = z_{0}(y), \ z_{t}(y, 0) = 0, \ 0 \le y \le l$$

The string supports are of the free-boundary type (lateral, but no vertical restraint), and no external forces are acting. Solve the differential equation by separation of variables.