國立成功大學八十四學年度發工所考試(材料力學試題) 共/頁

(甲組)

- 1. Each vertical bar in the apparatus shown in the Fig. 1 is made of steel and has cross-sectional area 1200 mm². Find the tensile stress σ in the middle bar if the rigid plate AB weighs 360 kN. (20%)
- 2. The shear-force diagram for a beam is shown in the Fig. 2. Assuming that no couples act as loads on the beam, draw the bending-moment diagram. (Note that the shear force has units of kilonewtons.) (15%)
- 3. A thin-walled tube having an elliptical cross section (see Fig. 3) is subjected to a torque T=6kN m. Determine the shear stress τ and the angle of twist θ per unit length if G=80 GPa, t=5 mm, a=75 mm, and b=50 mm. (Note: The area of an ellipse is π ab, and its circumference is approximately $1.5 \pi (a+b) \pi \sqrt{ab}$.) (15%)
- 4. Strain gauges oriented in the x and y directions are attached to a thin rectangular steel plate as shown in the Fig. 4. The plate is subjected to uniform normal stresses σ_x and σ_y . The strain gauges give readings $\varepsilon_x = 500 \times 10^{-6}$ and $\varepsilon_y = 100 \times 10^{-6}$. Assuming that E = 200GPa and v = 0.30, calculate the stresses σ_x and σ_y . (20%)
- 5. Determine the displacements of a beam (see Fig. 5) by Castigliano's second theorem. (15%)
- 6. Explain the following mechanical terms: (15%)
 - 1) The core of a cross section
 - 2) The critical load of a column
 - 3) Moment-Area Method for determining the deflection of a beam.

Fig. 1.

Fig. 2

Fig. 3

Fig. 4

Fig. 5.