國立成功大學 (85) 學年度 學工程 所工程數學中Z組織題 頁 碩士班招生考試 頁

5. Mathematical Statistics:

- (a) Central Limit Theorem is the most important/fundamental theory for statistics application in Biology, Medicine and Health Sciences. Please describe the Central Limit Theorem and explain their application in Biostatistics. (10%)
- (b) The following displacement-voltage data were obtained from calibration testing of a new sensor design. Use least-squares error method for linear regression analysis of the data. (10%)

Displacement (mm) 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 Output Voltage (V) 0.52, 0.99, 1.50, 1.98, 2.61, 2.98, 3.47, 4.1, 4.52, 4.97

6. Complex Analysis:

- (a) {use Cauchy's integral formula and partial fractions} $g(z) = (z^2 - 1)^{-1} \cdot \tan z$ around the circle C: $|z| = \frac{3}{2}$ (counterclockwise)
- (b) Find the linear fractional transformation $(w = \frac{az + b}{cz + d}, ad bc \neq 0)$ that maps $z_1 = -1$, $z_2 = i$, $z_3 = 1$, onto $w_1 = 0$, $w_2 = i$, $w_3 = \infty$ and make a sketch of the disk and the half-plane. (10%)

7. Numerical Methods:

Interpolate $f_0 = f(0)=1$, $f_1 = f(2)=9$, $f_2 = f(4)=41$, $f_3 = f(6)=41$ by the cubic spline satisfying $k_0=0$, $k_3=-12$. (20%)

Given the following equations:
$$\begin{aligned} k_{j-1} + 4k_j + k_{j+1} &= \frac{3}{h} (f_{j+1} - f_{j-1}), \quad j = 1, \dots, n-1, \\ p_j(x) &= a_{j0} + a_{j1} (x - x_j) + a_{j2} (x - x_j)^2 + a_{j3} (x - x_j)^3 \\ a_{j0} &= p(x_j) = f_j \\ a_{j1} &= p_j'(x_j) = k_j \\ a_{j2} &= \frac{1}{2} p_j''(x_j) = \frac{3}{h^2} (f_{j+1} - f_j) - \frac{1}{h} (k_{j+1} + 2k_j) \\ a_{j3} &= \frac{1}{6} p_j'''(x_j) = \frac{2}{h^3} (f_j - f_{j+1}) + \frac{1}{h^2} (k_{j+1} + k_j) \end{aligned}$$