85 學年度國立成功大學 發對工程研究所 物理化學 試題 共 / 頁 第 / 頁

1. (10%) What concentrations of the following have the same ionic strength as $0.1 \, \text{M}$ NaCl?

$$\text{CuSO}_4$$
, $\text{Ni}(\text{NO}_3)_2$, $\text{Al}_2(\text{SO}_4)_3$, Na_3PO_4 , $\text{K}_4\text{Fe}(\text{CN})_6$

2. (10%) Calculate the emf of the cell.

Co | Co²+ | Ni²+ | Ni
$$Co^{2}+ + 2e^{-} \longrightarrow Ni$$
 E⁰=-0.25V (a) [Ni²+] =1.0 M, and [Co²+] = 0.1 M

- (a) $[Ni^{2+}] = 1.0 \text{ M}$, and $[Co^{2+}] = 0.1 \text{ M}$ (b) $[Ni^{2+}] = 0.01 \text{ M}$, and $[Co^{2+}] = 1.0 \text{ M}$
- 3. (10%) Describe some of the most important characteristic of a chemisorbed layer. In what ways does a physisorbed layer differ?
- 4. (10%) A second-order reaction in solution has a rate constant (k) of 5.7 x 10-5 dm³ mol-1 s-1 at 25°C and of 16.4 x 10-5 dm³ mol-1 s-1 at 40°C. Calculate the activation energy (E) and the preexponential factor (A), assuming the Arrhenius law (k = Ae-E/RT; R is the gas constant, equal to 8.314 J K-1 mol-1) to apply. (Note: log 16.4 x 10-5 = -3.785, log 5.7 x 10-5 = -4.244)
- 5. (20%) $\Delta G = \Delta H T\Delta S$ is a equation of the second thermodynamics. Please (i) define the meaning of G, H, S, respectively.
 - (ii) describe the relationship between this equation and chemical reaction.
- 6. (20%) Obtain the rate equation corresponding to the mechanism

$$E+S \xrightarrow{k_1} ES \xrightarrow{k_2} E+ P$$

Here E and S are the enzyme and substrate, P is the product. Usually the substrate concentration is much higher than that of the enzyme concentration. Under these conditions the concentration of the enzyme-substrate complex ES must be very much less than that of the substrate. Express the catalytic constant k_{cat} and the Michaelis constant K_{m} in terms of k_1 , k_{-1} , and k_2 .

7. (20%)

- (i) Derive the integrated rate equation for a reversible reaction of stoichiometry $A \xleftarrow{k_1} Y + Z$ Take the initial concentration of A as a_0 and the concentration at time t as a_0 -x.
- (ii) Obtain the integrated equation in terms of k_1 and the equilibrium constant $K=k_1/k_{-1}$