- 1. (20 %) The chemical reactions which may serve as the basis for titrimetric determinations are conveniently grouped into four types; (acid-base, oxidation-reduction, precipitation, complex). Please give examples and explain these reactions, respectively.
- 2. (20%) $\Delta G = \Delta H T \Delta S$ is an equation of the second thermodynamics. Please (i) define the meaning of G, H, S, respectively.
 - (ii) describe the relationship between this equation and chemical reaction.
- 3. (20 %) Derive the integrated rate equation for a parallel first reaction, and then have equations for [A], [B], [C] in exponential form. (assume; only A is present initially)

$$\begin{array}{c}
A \xrightarrow{k_1} & B \\
A \xrightarrow{k_2} & C
\end{array}$$

4. (20 %) (i) State the Arrhenius law. (ii) A second-order reaction in solution has a rate constant (k) of 5.7×10^{-5} dm³ mol⁻¹ s⁻¹ at 25 °C and of 16.4×10^{-5} dm³ mol⁻¹ s⁻¹ at 40 °C. Calculate the activation energy (E) and the preexponential factor (A), assuming the Arrhenius law to apply.

(R is the gas constant, equal to 8.314 J K-1 mol-1)

- 5. (10 %) Describe the following problems:
 - (i) what is the enzyme catalysis?
 - (ii) what is the coenzyme reaction?
- 6. (10 %) Calculate E° at 25°C for the cell Cd | Cd2+ || Cu2+ | Cu and determine the cell reaction and its equilibrium constant.

Here
$$1/2 \text{ Cd}^{2+} + e^{-} = 1/2 \text{ Cd}$$

$$E^{o} = -0.4020 \text{ V}$$

$$1/2 \text{ Cu}^{2+} + e^{-} = 1/2 \text{ Cu}$$

$$E^0 = +0.3394 \text{ V}$$