图 學年度 國立成功大學 医之色 思, 普通似學 故题 第/页

- 1. Write structural formulas for each of the following: (10 %)
- (a) 3-isopropyl-3-ethylheptane, (b) 2-chloro-3-methylpentane,
- (c) Glycerol (d) tetrabuthylammonium bromide,
- (e) 2-methyl-4-nonanone
- 2. Name the following compounds. (20 %)
- (1) (CH₃)₃SiCl, (2) HOCH₂CH₂CH₂C≅CH, (3) NaClO₄,
- (4) KMnO₄, (5) PCl₅,

(6) CH₃C₆H₄SO₃H

(7) $K_3[Fe(CN)_6]$, (8) LiAl H_4 ,

(9) K₂[PtCl₆],

- (10) (CH₃)₃N
- 3. You want to make a buffer with a pH of about 6 which one of the following conjugated acid-base pairs would you use? Explain. (10 %)
- (a) $H_3PO_4 H_2PO_4$ (Ka $H_3PO_4 = 7.5 \times 10^{-3}$)
- (b) $H_2CO_3 HCO_3 (Ka H_2CO_3 = 4.2 \times 10^{-7})$
- (c) $NH_4+ NH_3$ (Ka $NH_4+ = 5.6 \times 10^{-10}$)
- 4. Calculate the number of moles of H₂O molecules in 1.000 liter of water at 0°C if the density of water at this temperature is 0.9998 g/cm³. (10 %)
- 5. Describe the alternative definitions of acids and bases on the basis of Arrhenius, Bronsted-Lowry and Lewis concepts, respectively. (10 %)
- 6. Please make an example describe what is (i) amino acid, (ii) lipid, (iii) nucleotide, (iv) DNA, respectively. (20 %)
- 7. Describe how the primary, secondary, tertiary, and quaternary structures of a protein differ. (20 %)