88 學年度國立成功大學正學工程研究於控制工程試題 共2頁

- 1) What are the advantages and disadvantages of an open-loop system vs a closed-loop system? (15%)
- 2) Solve the following equation using Z-transform (20%) y(k+2) + 0.5y(k+1) + 0.2y(k) = u(k) where u(k) = 1 for k = 0, 1, 2,... and initial conditions y(0) = y(1) = 0
- 3) The linearized model of a robot arm system driven by a DC motor is shown in the following figure. The system parameters and variables are given as follows: (35%)

DC MOTOR

 $A T_m = motor torque = K_i i_a$

 ★ K_i = torque constant

▲ i_a = armature current of motor

▲ J_m = motor inertia

· · · ▲ B_n = motor viscous-friction coefficient

ROBOT ARM

 \blacktriangle J_L = inertia of arm

▲ T_L = disturbance torque on arm

 $\mathbf{A} \quad \theta_t = \operatorname{arm displacement}$

★ K = torsional spring constant

 A B = viscous-friction coefficient of shaft between the motor and arm

▲ B_L = viscous-friction coefficient of the robot arm shaft

(a) Write the differential equations for the system with $i_e(t)$ and $T_L(t)$ as input and $\theta_L(t)$ and $\theta_L(t)$ as outputs.

- (b) Draw a SFG using $i_a(s)$, $T_L(s)$, $\Theta_m(s)$, and $\Theta_L(s)$ as node variables.
- (c) Express the transfer-function relations as

$$\begin{bmatrix} \Theta_m(s) \\ \Theta_L(s) \end{bmatrix} = \mathbf{G}(s) \begin{bmatrix} I_s(s) \\ -T_L(s) \end{bmatrix}$$

Find G(s).

- 4) What are the three methods for the determination of stability of a linear continuous system? Please explain briefly. (15%)
- 5) What are the PD, PI, and PID controllers? Write down their input-output transfer functions. (15%)