- 1. For $V = E_{\theta}R \cos\theta$, determine the field at the point (1,1,0). (10%)
- 2. Determine the electric field intensity of an infinite planar charge with a uniform surface charge density ρ_s . (10%)
- 3. Two point charges, Q_1 and Q_2 , are located at (1,2,0) and (2,0,0), respectively. Find the relation between Q_1 and Q_2 such that the total force on a test charge at the point P(-1,1,0) will have zero x-component. (10%)
- 4. Verify that $V_1 = C_1/R$ and $V_2 = C_2 \mathbf{z}/(x^2 + y^2 + z^2)^{3/2}$, where C_1 and C_2 are arbitrary constants, are solutions of Laplace's equation. (20%)
- 5. Find the leakage resistance per unit length between the inner and outer conductors of a coaxial cable that has an inner conductor of radius a, an outer conductor of inner radius b, and a medium with conductivity σ . (20%)
- 6. A direct current *I* flows in a straight wire of length *2L*. Find the magnetic flux density at a point located at a distance **r** from the wire in the bisecting plan. (20%)
- 7. Explain the Hall effect. (10%)