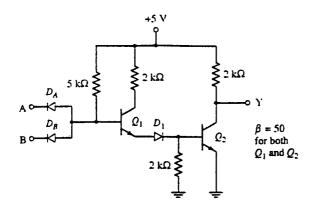
編號: E130 系所:電機工程學系戊組, 甲, 乙, 丁健, 科目:電子學 (放电子) 千, 老的所決, 丁健, 经工价 乙蝕

- 1. Calculate the logic low fan-out of the DTL gate shown in Fig .1. (15%)
- 2. The transistors in the circuit in Fig. 2 both have parameters $V_{TN}=0.8$ V and $k_n'=30$ $\mu A/V^2$. (a) If the width-to-length ratios of M_1 and M_2 are $(W/L)_1=(W/L)_2=40$, determine V_0 and I_D . (b) Repeat part (a) if the width-to-length ratios are changed to $(W/L)_1=40$ and $(W/L)_2=15$. (18%)
- 3. Your answers must be as brief as possible for the following questions
 - (a) Draw a block diagram of a two-stage OP-AMP, and briefly explain the function of each block. (3%)
 - (b) What are the advantages of using active loads in OP-AMP IC design? (3%)
 - (c) Define a (I) class A, (II) class B, and (III) class AB amplifier. (3%)
 - (d) List three advantages of class B over class A. (3%)
 - (e) What are the characteristics of an amplifier that can be modified by negative feedback? (3%)
- 4. Suppose you have an amplifier with a transfer function given by

$$a(j\omega) = \frac{10^5}{(1+j\omega/10^3)(1+j\omega/10^5)(1+j\omega/10^6)}$$


and you apply negative feedback to the amplifier, using a feedback network that is not a function of frequency. If you desire to have a closed-loop gain of 30 dB with a 45° phase margin (PM), and you compensate the loop by moving the dominant pole frequency down, what new pole frequency should be used? (10%)

- 5. For the circuit in Fig. 3.
 - (a) Find the loop gain L(s), and the oscillation frequency f_0 . (6%)
 - (b) The ratio of R_2/R_1 for oscillation. (4%)
- 6. For the diode circuit shown in Fig. 4, write the load line equation and draw the possible load line for the diode using (a) a constant resistor or (b) a depletion-mode n-MOSFET with $V_{GS} = 0 V$ or (c) an enhancement-mode n-MOSFET with $V_{GS} = V_{DS}$ as the load device. (15%)
- 7. For the circuit in Fig. 5(a) and the corresponding *i-v* characteristics in Fig. 5(b), if the dc operation point of the MOSFET is set at $(I_{DQ}, V_{GSQ}) = (1.5 \text{ mA}, 3.5 \text{ V})$, find the value of V_{DD} , R_D , R_{G2} , and voltage gain $A_v (\equiv dv_O/dv_I)$. Assume threshold voltage $V_t = 1 V$ and $R_{G1} = 100 \text{ M}\Omega$. (17%)

(背面仍有題目,請繼續作答)

編號: E 130 系所:電機工程學系戊組

科目:電子學

 $V_{IDI} = 5 \text{ V}$ $\downarrow I_{ID}$ $\downarrow M_{1}$ $\downarrow M_{2}$ $\downarrow M_{2}$

Fig. 1

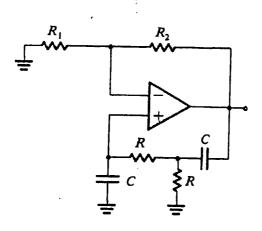


Fig. 2

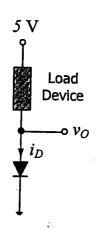


Fig. 3

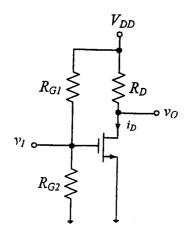


Fig. 5(a)

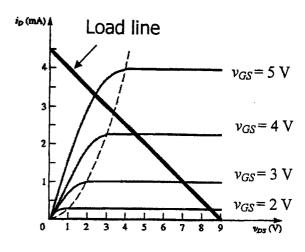


Fig. 5(b)