國立成功大學九十四學年度碩士班招生考試試題

編號: E 332 系所: 醫學工程研究所丙組

科目:普通化學

- 1. Write a structural formula for each of the following compounds. (20%)
- (1) Ethylene glycol, (2) Acetylene, (3) Glycerin, (4) Nitrite, (5) Acetonitrile,
- (6) Chloroform, (7) Ammonium phosphate, (8) Magnesium bicarbonate,
- (9) Ferric hydroxide, (10) para-Aminobenzoic acid.
- 2. Name the following compounds with English and Indicate whether each of these compounds is an electrolyte or a non-electrolyte when placed in water

 (10%)
- (1) $NaClO_4$, (2) $(CH_3)_2CHOH$ (3) $(CH_3)_2O$ (4) $KCrO_4$, (5) HBr
- A compound is known to contain carbon and hydrogen. It might also contain oxygen. A 0.250 g sample of the compound is burned to produce 0.293 g H₂O and 0.478 g CO₂.

 (10%)
- (1) What is the formula for this compound?
- (2) What is the percent by mass for each element in this compound?
- (3) Write the balanced combustion reaction (reaction with O₂) for this compound.
- **4.** The hydroquinone molecule can be converted to the quinine molecule as shown below: (10%)

$$C-C$$
 $C-C$
 $C-C$

You may want to use a combination of shortcut rules and dot diagrams to assign oxidation numbers before answering the following questions:

- (a) which atom(s) are oxidized and reduced, respectively?
- (b) What is the oxidizing agent and what is the reducing agent?
- 5. Describe the alternative definitions of acids and bases on the basis ofArrhenius, Bronsted-Lowry and Lewis concepts, respectively. (10%)

(背面仍有題目,請繼續作答)

國立成功大學九十四學年度碩士班招生考試試題

編號: E 332 系所: 醫學工程研究所丙組

科目:普通化學

- 6. Please define what is (1) buffer solution and buffer capacity, (2) acid-base indicator, respectively. (10%)
- 7. Consider the following equilibrium:

(10%)

$$NH_4^+(aq) + H_2O(l) \implies NH_3(aq) + H_3O^+(aq)$$

- The Keq for the reaction is 5.6×10^{-10} .
 - (1) Is a solution of ammonium ion weakly acidic or strongly acidic?
 - (2) Is water acting as an acid or base according to the Bronsted-Lowry definition? Explain.
 - (3) Should we call the Keq ab acidic constant, K_a, or a basicity constant, K_b? Explain your answer.
- **8.** Chlorine exists as two isotopes in nature, $^{35}_{17}Cl$ (atomic weight 34.969, % natural abundance = 75.77%), and $^{37}_{17}Cl$ (atomic weight 36.966). (10%)
- (1) What is the % natural abundance for $_{17}^{37}Cl$ isotope?
- (2) What is the atomic weight of naturally occurring Chlorine?
- (3) How many times heavier is ${}_{17}^{37}Cl$ than ${}_{17}^{35}Cl$?
- 9. Consider the reaction:

(10%)

$$CH_4(g) + 2 H_2S(g) \rightleftharpoons CS_2(g) + 4 H_2(g)$$

For this reaction at 900°C, the equilibrium concentrations (Keq) is 3.59. The concentrations of the gases in the vessel at 900°C are; $CS_2 = 1.51$ M; $H_2 = 1.08$ M; $CH_4 = 1.15$ M; $H_2S = 1.20$ M, respectively. Please calculate it and show that this reaction is at equilibrium or not.