科目:電子學

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

- 1. (15 %) Explain the terminologies generally used in microelectronics:
- (a) Opto-isolator
- (b) Register transfer logic (RTL) in IC design
- (c) VHDL in IC design
- (d) Electronic design automation (EDA)
- (e) Switched-capacitor integrator

(Figure 1)

- 2. (15 %) Figure 1 is a modified Howland amplifier which has been designed to be a constant current pump (source) or a voltage to current converter.
- (a) Please show that the current across R1 is independent of R_load and R3.
- (b) Based on the modified Howland amplifier above, we wish to design a micro-processor controlled constant current mono-phase pulse of $300\,\mu$ s pulse width with 4096 steps current outputs at 1 kHz. Please draw your design in block diagram with necessary specifications. You can make any assumptions and use components that you are familiar with.
- 3. (20 %) Figure 2 shows a simple astable multivibrator using two ideal NOR CMOS gates.
- (a) Please draw the output of V_2 with reference to V_3 on the right hand side of Fig. 2.
- (b) Derive the period (T) of the astable multivibrator in terms of RC, V_{DD} and $V_{\text{th.}}$
- (c) Please give your design such that the frequency of the astable multivibrator will be 1 kHz.

編號:

229 系所:醫學工程研究所乙組

科目:電子學

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

4. (15 %) Sallen-Key filter is one of common filters with a single op-amp, as shown in Fig. 3.

- (a) Calculate the DC gain, K.
- (b) Derive the Vout/Vi
- (c) Give your components that meet the requirement of a low pass filter at cut off frequency of 1 kHz.

(Figure 3)

- 5. (15 %) In our laboratory, we wish to design a phase detector that can measure the phase difference between two sinusoidal waveforms at the same frequency.
- (a) First, please draw your design of a Wien bridge oscillator (or any other kind) that can generate sine wave source of 1 kHz.
- (b) Draw your design of the phase detector with the input and output signals. Describe your design considerations.
- 6. (20%) As shown in Fig. 4, a MOFET can be biased by a constant-current source I_Q . The threshold voltage of the n-channel MOSFET is denoted as V_{TN} . The conduction parameter for the n-channel transistor is denoted as K_n . M2, M3, and M4 with transistor parameters K_{n2} , K_{n3} , K_{n4} , form the current source.

We can write $K_{n3} (V_{GS3}-V_{TN3})^2 = K_{n4} (V_{GS4}-V_{TN4})^2$

- (a) Determine I_0 in terms of K_{n2} , V_{GS3} , V_{TN2}
- (b) Assume that the threshold voltage of each transistor is $V_{TN}=1$ V. Design the ratio of transistor parameters of M4 and M3, K_{n4}/K_{n3} such that $V_{GS3}=2$ V.
- (c) Determine the transistor parameter of M2, K_{n2} such that $I_Q = 100 \mu A$.

(Figure 4)