編號: 7232 系所:醫學工程研究所乙組

科目:電磁學

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

1. Given a field function $\mathbf{E} = \mathbf{a}_{\mathbf{x}}(y - c_1 z) + \mathbf{a}_{\mathbf{y}}(c_2 x - 2z) + \mathbf{a}_{\mathbf{z}}(c_3 y + z)$.

- a) Determine the constants c_1 , c_2 , and c_3 if E is irrotational.
- b) Determine its scalar potential function V with the condition V(1, 1, 1) = 5. (20%)
- 2. Determine the electric field caused by a spherical distribution of anions in a homogeneous solution with a volume charge density $\rho = \rho_{\theta}$ for $0 \le R \le a$ (both ρ_{θ} and a are positive) and $\rho = 0$ for R > a. (20%)
- 3. A simplified model for the electric activity of heart may be considered as an electric dipole varying with time. For a time instant, the equivalent dipole may be approximated as **p** in *y-z* plane as shown in Fig 1. Determine the potential and electric field at point A. Note: Denote and describe clearly your variables for the material properties in the space. (20%)

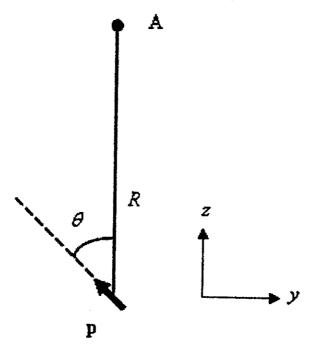


Fig. 1

(背面仍有翅目,前極順作各)

編號: 7 232 系所:醫學工程研究所乙組

科目:電磁學

本試題是否可以使用計算機: ☑ 可使用 , □ 不可使用 (請命題老師勾選)

4. A new technique called transcranial magnetic stimulation has been developed for psychiatric treatment. It is a technique to apply the magnetic field to stimulate the cortex. A current-carrying circular loop with the radius a and current I (as shown in Fig. 2) may be used as a simple magnetic stimulator for this purpose. Determine the magnetic flux density at point A. Note: Denote and describe clearly your variables for the material properties in the space. (20%)

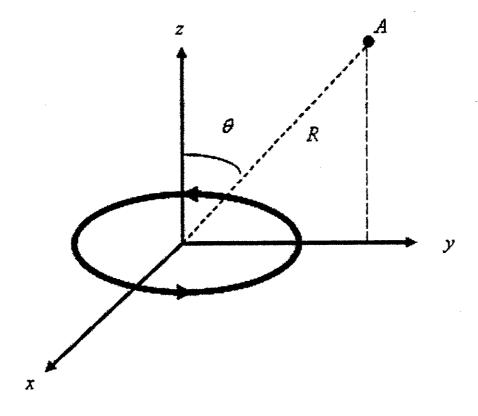


Fig. 2

- 5. A dielectric layer of thickness d and intrinsic impedance η_2 is placed between media 1 and 3 having intrinsic impedances η_1 and η_3 , respectively. Determine d and η_2 such that no reflection occurs when a uniform plane wave in medium 1 impinges normally on the interface with medium 2. (10%)
- 6. Find the Poynting vector on the surface of a long, straight conducting wire of radius b and conductivity σ that carries a direct current I. (10%)