編號: 229 系所:醫學工程研究所乙組

科目:電子學

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

1. Fig. 1 shows a simple GaAs MESFET amplifier, with the W values of the transistors indicated. Assume that the dc component of  $v_I$  biases  $Q_I$  at the current provided by the current source  $Q_2$  so that both devices operate in saturation and that the dc output is at half of the supply voltage. Find (a) the  $\beta$  values for  $Q_I$  and  $Q_2$ , (b)  $V_{GSI}$ , (c)  $g_{mI}$ ,  $r_{oI}$ , and  $r_{o2}$ , and (d) the small-signal voltage gain. The typical parameter value for  $\lambda$  is 0.1 V<sup>-1</sup>. (20%)

- 2. Draw the four basic feedback topologies. (10%)
- 3. An alternative bridge amplifier configuration is shown in Fig. 2. Find the gain  $v_0/v_I$ , and the largest sine wave across  $R_L$  for op amps using  $\pm$  15 V supplies that limit at  $\pm$ 13 V. (20%)



Fig. 1



Fig. 2

## 國立成功大學九十六學年度碩士班招生考試試題

編號: 229 系所:醫學工程研究所乙組

究所乙組 科目:電子學

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

- (4) (15 %) Figure 3 is the electronic circuit required to control a stepper motor that is used for stretching the joint angle of a human subject. Assume that the input is repetitive cycles of binary code 00, 01, 10, 11.
  - (a) Describe the output sequences of A, B, C, D when the Direction is open or grounded.
  - (b) Could you extend the device using any necessary electronic components to calculate the rotational velocity of the motor in terms of round per minute (RPM)?



- (5) (20 %) Assume that the op-amps in Fig. 4 are all ideal operational amplifier.
  - (a) Calculate the input resistance (Vs/Is) in Fig. 4a. What is special of the result?
  - (b) The Fig. 4a can be extended to Fig. 4b as a modified Howland current source. Please calculate I<sub>Load</sub> and explain why Fig.4b is a constant current source.
  - (c) Can you calculate the output resistance of Fig. 4b? Under what condition, the ideal output resistance will approach to infinity.



- (6) (15 %) Explain the following terminologies generally used in electronics
  - (a) Decoupling capacitor
  - (b) Cross-over distortion in amplifier
  - (c) Miller effect
  - (d) Ground loop problem
  - (e) Monostable multivibrator