編號:

200

國立成功大學九十八學年度碩士班招生考試試題

共 3 頁,第/頁

系所組別: 醫學工程研究所甲、丁組

考試科目: 材料導論

考試日期:0307, 節次:2

□不可 使用計算機 ※ 考生請注意:本試題 10可

2009 Biomedical Engineering Master Entrance Exam—Materials Science

(可用計算機)

解釋名詞: (50 分 每題 2 分) I.

- 1. Annealing
- 2. Alloy
- 3. Cold working
- 4. **CRSS**
- 5. Viscoelasticity
- 6. Electric dipole
- 7. Phase diagram
- 8. **FCC**
- 9. Fracture toughness
- 10. Frenkel and Schottky defects
- 11. Grain
- 12. Dislocation line
- 13. Stress relaxation
- 14. Slip system
- 15. Recrystallization
- 16. Fatigue life
- 17. Stoichiometry
- 18. Syndiotactic
- 19. Unit cell
- 20. Interdiffusion and interstitial diffusion
- 21. Ductility vs brittle
- 22. Resilience vs toughness
- 23. True stress, corrected stress, and engineering stress
- 24. Yield strength vs. tensile strength
- 25. Tran and Cis structure

編號:

200

國立成功大學九十八學年度碩士班招生考試試題

共 う 頁 , 第2頁

系所組別: 醫學工程研究所甲、丁組

考試科目: 材料導論

考試日期:0307, 箭次:2

※ 考生請注意:本試題 ☑可 □不可 使用計算機

II. 計算及簡答題 (50 分,每題 10 分)

1. Determine the magnitude of the Schmid factor (resolved shear stress) for an FCC single crystal oriented with its [120] direction parallel to the loading axis. Slip Plane (111) Slip direction [01-1]

2. Some aircraft component is fabricated from an aluminum alloy that has a plane strain fracture toughness of 43 MPa m. It has been determined that fracture results at a stress of 290 MPa when the maximum (or critical) internal crack length is 3.5 mm. For this same component and alloy, will fracture occur at a stress level of 320 MPa when the maximum internal crack length is 7.5 mm? Why or why not?

3. A three-point bending test is performed on a spinel (MgAl₂O₄: the elastic modulus (E) for spinel is 260 GPa) specimen having a rectangular cross section of height d = 3.8 mm and width b = 9 mm; the distance between support points is 25 mm. (a) Compute the flexural strength if the load at fracture is 350 N.

(b) The point of maximum deflection Δy occurs at the center of the specimen and is described by $\Delta y = FL^3/48EI$

where E is the modulus of elasticity and I is the cross-sectional moment of inertia. Compute Δy at a load of 310 N.

編號:

200

國立成功大學九十八學年度碩士班招生考試試題

共ろ頁、第ろ頁

系所組別: 醫學工程研究所甲、丁組

考試科目: 材料導論

考試日期:0307,節次:2

※ 考生請注意:本試題 □可 □不可 使用計算機

4. Next figure is the tin-gold phase diagram, for which only single-phase regions are labeled. Specify temperature-composition points at which all eutectics, eutectoids, peritectics, and congruent phase transformations occur. Also, for each, write the reaction upon cooling.

- 5. Please draw the repeat unit (monomer) of the following common polymers.
- (1) Poly(vinly chloride)
- (2) Poly (propylene)
- (3) Poly(methyl methacrylate)
- (4) Polystyrene
- (5) Poly(dimethyl siloxane)