系所組別 醫學工程研究所甲組

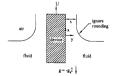
考試科目: 流體力學

番鞋日期:0307·新次:2

※ 考生請注意:本試題 □可 101不可 使用計算機

- 1. Given $v = Ax\hat{i} Ay\hat{j}$, determine (a) the Eulerian acceleration (10%), (b) the components of strain rate
 - (10%), and (c) the divergence of the velocity field (5%).
 - 2. Given $v = \frac{x}{1+t}\hat{i} + \hat{j}$, find the equation of:
 - (a) The streamline through the point (1, 1) at t=0 (8%),
 - (b) The path line for a particle released at the point (1, 1) at t=0 (9%), and
 - (c) The streak line at t=0 which passes through the point (1, 1) (8%).
- For a steady incompressible flow of water through the reducing elbow shown to the right, the entrance area A_i is

force required to hold the bend in place (20%).


30 cm² and the exit area A_1 is $\frac{1}{2}A_1$. The mean velocity

v₁ entering the elbow is 5 m/s with an inlet pressure of 5 Pa and outlet pressure equal to atmospheric. Find the total

y n = 4 - v Support

4. A biomedical device is thrombogenic and thus must be coated with a thin biocompatible film thickness as shown below. Assume that the fluid adheres to the device (no slip) as the device is pulled through it. Assume a constant film thickness h, and that the fluid behaves as Newtonian and

incompressible. By solving Navier-Stokes equations, show that $h = \sqrt{\frac{2\mu U}{\rho g_*}}$ (20%).

5. For a Newtonian fluid, the velocity field of the fully developed laminar flow in a pipe is shown to be

$$u(r) = \frac{-R^2}{4\mu} \frac{dp}{dz} \left(1 - \frac{r^2}{R^2} \right)$$
. Determine the flow rate (10%).