系所組別：電機工程學系甲乙丁戊組，電腦與通信工程研究所丙丁組，電機資訊學院－微電奈米聯招

第1頁，共5頁

※ 考生請注意：本試題可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．In the circuit shown in Fig．1，both diodes are identical，conducting 10 mA at 0.7 V and 100 mA at 0.8 V ．For $\mathrm{V}_{\mathrm{O}}=$ 80 mV ，find the value of R ．Given the thermal voltage $\mathrm{V}_{\mathrm{T}}=25 \mathrm{mV} .(10 \%)$

Fig． 1

2．In the circuit shown in Fig．2， $\mathrm{v}_{\text {sig }}$ is a small sinewave signal with zero average．Given the transistor $\beta=100, \mathrm{r}_{\mathrm{o}}=$ $200 \mathrm{k} \Omega$ ，and $\mathrm{R}_{\mathrm{C}}=20 \mathrm{k} \Omega$ ．
（a）Find R_{E} for a dc emitter current of 0.5 mA ．（ 5% ）
（b）Find the（small－signal）voltage gain．（8\％）

Fig． 2

3．In the circuit shown in Fig．3，the two transistors have equal lengths $\left(L_{1}=L_{2}\right)$ but widths related by $W_{2} / W_{1}=5$ ． Design the circuit to obtain $\mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~mA}$ ．Let $\mathrm{k}_{\mathrm{n}}{ }^{\prime}(\mathrm{W} / \mathrm{L})_{1}=0.8 \mathrm{~mA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{t}}=1 \mathrm{~V}$ ，and $\lambda=0$ ．
（a）Find the required value of R．（5\％）
（b）What is the lowest possible Vo while Q_{2} remains in the saturation region？（5\％）

Fig． 3
4．Fig． 4 show a series－shunt amplifier in which the three MOSFETs are sized to operate at $\left|\mathrm{V}_{\mathrm{ov}}\right|=0.2 \mathrm{~V}$ ．Let $\left|\mathrm{V}_{\mathrm{t}}\right|=0.5$ $\mathrm{V},\left|\mathrm{V}_{\mathrm{A}}\right|=20 \mathrm{~V}, \mathrm{I}=0.1 \mathrm{~mA}, \mathrm{R}_{1}=2 \mathrm{k} \Omega$ ，and $\mathrm{R}_{2}=18 \mathrm{k} \Omega$ ．The current sources utilize single transistors and thus have output resistances equal to r_{0} ．
（a）Calculate the overall open－loop voltage gain A．（4\％）
（b）Find feedback factor β ．（3\％）
（c）Find closed－loop gain $A_{f}=V_{0} / V_{s}$ ．（3\％）
（d）Find the output resistance $\mathrm{R}_{\text {out．}}$（ 3% ）

Fig． 4

5．For the cascoded gain stage in Fig．5，let $2 \mathrm{I}=26 \mu \mathrm{~A} ; \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=20 \mu \mathrm{~A} / \mathrm{V}^{2} ; \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=10 \mu \mathrm{~A} / \mathrm{V}^{2} ;\left|\mathrm{V}_{\mathrm{t}}\right|=1 \mathrm{~V} ;\left|\mathrm{V}_{\mathrm{A}}\right|=26 \mathrm{~V} ; \mathrm{W} / \mathrm{L}$ for $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{1 \mathrm{C}}$ ，and $\mathrm{Q}_{2 \mathrm{C}}=130 / 8$ ； W / L for $\mathrm{Q}_{3 C}$ and $\mathrm{Q}_{4 \mathrm{C}}=65 / 8$ ；and $\mathrm{W} / \mathrm{L}=8 / 8$ for Q_{3} and Q_{4} ．
（a）Find output impedance， $\mathrm{R}_{0}(5 \%)$
（b）Find voltage gain， $\mathrm{A}=\mathrm{V}_{\mathrm{d}} /\left(\mathrm{V}_{\text {in }}{ }^{+}-\mathrm{V}_{\text {in }}{ }^{-}\right)$

第 3 頁，共 5 頁

Fig． 5

6．The NMOS transistor in the discrete CS amplifier circuit of Fig． 6 is biased to have $g_{m}=1 \mathrm{~mA} / \mathrm{V}$ ，Find the three poles（ $\omega_{p 1}, \omega_{p 2}, \omega_{p 3}$ ）relative to $0.01 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 10 \mu \mathrm{~F}$ and the gain（ A_{M} ）in the transfer function of $\frac{V_{o}}{V_{s i g}}=A_{M}\left(\frac{s}{s+\omega_{P 1}}\right)\left(\frac{s}{s+\omega_{P 2}}\right)\left(\frac{s}{s+\omega_{P 3}}\right)$ where $\omega_{P i}=2 \pi f_{i}$
（10\％）

Fig． 6

國立成功大學 104 學年度碩士班招生考試試題

系所組別：電機工程學系甲乙丁戊組，電腦與通信工程研究所丙丁組，電機資訊學院－微電奈米聯招

考試科目：電子學
考試日期：0211，節次：1
第 4 頁，共 5 頁
7．For the circuit shown in Fig．7，assuming the threshold voltages of all transistors to be equal in magnitude and $k_{1}=k_{2}, k_{3}=k_{4}=16 k_{1}$ ．（Note that $k=\frac{1}{2} \mu_{o x,} \frac{W}{L}$ ）．Find the required vake of I_{1} to yield a bias current in Q_{3} and Q_{4} of 1.6 mA．（6\％）

Fig． 7

8．For the circuit shown in Fig．8，assuming that the op amplifier is ideal．
（a）Derive the expression of voltage transfer ratio $\frac{\nu_{o}}{v_{s}}$ as a function of ω ．（4\％）
（b）Sketch the magnitude Bode plot to scale．（4\％）
（c）For design requirements of DC gain $=2$ and cutoff frequency $=500 \mathrm{~Hz}$ ，find the values of R_{2} and C ，assume $R_{1}=1 \mathrm{k} \Omega$ ．（4\％）

Fig． 8

9．Consider the circuit illustrated in Fig． 9.
（a）Find the minimum value of R_{2} / R_{1} required for oscillation．（4\％）
（b）Find the frequency of oscillation．（4\％）

國立成功大學 104 學年度碩士班招生考試試題

系所組別：電機工程學系甲乙丁戊組，電膍與通信工程研究所丙丁組，電機資訊學院；锽電奈米聯招

考試科目：電子學

考試日期：0211，節次：1

第5頁，共5頁

Fig． 9

10．Fig． 10 shows a circuit that performs signal generation．
（a）Draw the waveforms of v and v_{0} ．（4\％）
（b）What is its frequency of oscillation？（4\％）

Fig． 10

