編號: 187、205

國立成功大學 105 學年度碩士班招生考試試題

系 所:電機工程學系、電機資訊學院-微電、奈米聯提

考試科目:電子學

考試日期:0227,節次:1

第1頁,共4頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. An ideal 9V Zener diode with zero incremental resistance is used in Fig. 1 for achieving voltage regulation.
 - (a) What is maximum load current I_L that can be drawn from the regulator if it is to maintain a regulated output? (5%)
 - (b) What is the minimum value of R_L that can be used and still have a regulated output voltage? (5%)

Fig. 1

- 2. Consider the amplifier circuit shown in Fig. 2, assume the transistor has β =100, V_{BEQ} =0.7V, and V_A (Early voltage) =100 V.
 - (a) Find the dc bias current I_{CQ} . (4%)
 - (b) Calculate the overall (mid-band) voltage gain v_o/v_{sig} , assume that C_I - C_3 are all shorted (8%)
 - (c) What are the functions of capacitors C_1 , C_2 , and C_3 ? (3%)

編號: 187 - 205

國立成功大學 105 學年度碩士班招生考試試題

系 所:電機工程學系、電機資訊學院、微電、奈料聯招

考試科目: 電子學

考試日期:0227,節次:1

第2頁,共4頁

- 3. Consider the single amplifier biquad filter shown in Fig. 3, assume ideal operational amplifier is used.
 - (a) Please derive the transfer function, $V_0(s)/V_i(s)$, and find out its ω_0 and Q. (6%)
 - (b) To realize a low-pass filter with f_0 =4 KHz and maximally flat response, find the required values for C_1 and C_2 , if R_1 = R_2 =10 K Ω . (4%)

Fig. 3

- 4. Consider the circuit shown in Fig. 4, assume ideal operational amplifier is used.
 - (a) Please analysis and draw v_0 - v_i transfer curve. (5%)
 - (b) For a triangular input waveform, please draw the corresponding output voltage waveform (correct scale required). (5%)

- 5. The maximum junction temperature rating of a certain power transistor is 200°C. For a case temperature of 25°C, the maximum allowed power dissipation is 15W.
 - (a) Find the junction-to-case thermal resistance. (2%)
 - (b) If this transistor is operated with a case-to-sink thermal resistance of 1°C/W in an ambient temperature of 75°C and with a power dissipation of 5W, find the maximum allowed sink-to-ambient thermal resistance. (3%)

編號: 187、205

國立成功大學 105 學年度碩士班招生考試試題

系 所:電機工程學系、電機資訊學院-微電、奈米聯招

考試科目:電子學

考試日期:0227,節次:1

第3頁,共4頁

- 6. As shown in Fig. 5, the op amp is ideal.
 - (a) Find the resistance looking into node 4, R₄, in terms of R.(4%)
 - (b) Find the current I₄ in terms of the input current I. (4%)
 - (c) Find the voltage at node 4, that is V_4 , in terms of (IR) (4%)

Fig. 5

- 7. Considering the design error because of the gross mismatch in the circuit of Fig. 6. Specifically, Q_2 has twice the W/L ratio of Q_1 . If v_{id} is a small sine-wave signal and $k_n = \mu_n C_{ox}$, find:
 - (a) I_{D1} and I_{D2} in terms of I (4%)
 - (b) V_{ov} (= V_{GS} - V_{TH}) for each of Q_1 and Q_2 in terms of I, k_n , and W/L (4%)
 - (c) The differential gain A_{d} (=V $_{od}\!/V_{id}\!)$ in terms of $R_{D},$ I, and V_{ov} (4%)

Fig. 6

編號: 187,205

國立成功大學 105 學年度碩士班招生考試試題

系 所:電機工程學系、電機資訊學程-微電、奈米聯提

考試科目:電子學

考試日期:0227,節次:1

第4頁,共4頁

8. Find the midband gain A_M (5%) and the upper 3-dB frequency f_H (5%) of a CS amplifier (Fig. 7) fed with a signal source having an internal resistance R_{sig} =10 k Ω . The amplifier has R_G =4.7 M Ω , R_D = R_L =20 k Ω , g_m =1mA/V, r_o =100 k Ω , C_{gs} =1 pF, and C_{gd} =0.4 pF.

Fig. 7

- 9. Considering the transresistance amplifier with feedback as shown in Fig. 8, if $g_m=5$ mA/V, $r_0=50$ k Ω , $R_f=10$ k Ω , and $R_s=2$ k Ω
 - (a) Find open-loop voltage gain A (4%)
 - (b) Find the closed-loop gain $A_f = V_o/I_S$ (4%)
 - (c) Find the input resistance R_{in} (4%)
 - (d) Find the output resistance Rout (4%)

