編號: 206

國立成功大學 106 學年度碩士班招生考試試題

系 所:電機資訊學院-微電、奈米聯招

考試科目: 固態電子元件

考試日期:0213,節次:2

第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. A silicon (Si) pn junction diode has been doped with 10^{18} boron atoms-cm⁻³ on the p-side and 10^{16} phosphorus atoms-cm⁻³ on the n-side. What is the resultant depletion width? What is the junction capacitance in unit of F/cm², assuming the relative permittivity of silicon is approximately 11.68 (12.5%)?
- 2. What is the resistance of a 1 cm³ germanium (Ge) crystal that has been doped with arsenic in a ratio of 1 in 10^9 (1 part per billion) (12.5%)? [Atomic concentration in Ge is 4.42×10^{22} cm⁻³, $n_i = 2.4 \times 10^{13}$ cm⁻³, $\mu_e = 3900$ cm²-V⁻¹-s⁻¹, and $\mu_h = 1900$ cm²-V⁻¹-s⁻¹]
- 3. An AlGaAs LED emitter has a peak emission at 820 nm at 25°C. The bandgap E_g of the ternary alloys $Al_xGa_{1-x}As$ follows the empirical expression $E_g(eV) = 1.424 + 1.266x + 0.266x^2$. What is the bandgap of this AlGaAs LED? What is the resultant composition of the AlGaAs in this LED (12.5%)?
- 4. Given the bandgap energy of germanium (Ge) is 0.66 eV, the density of states related effective masses of electrons and holes are respectively $1.59m_e$ and $0.33m_e$, where m_e is the free electron mass $(9.11\times10^{-31} \text{ kg})$ and the respective electron and hole drift mobilities at room temperature are 3900 and 1900 cm²-V⁻¹-s⁻¹, determine the intrinsic concentration and intrinsic resistivity of Ge (12.5%).
- 5. Consider a planar N-channel MOSFET with a TiN-gate (work-function Φ_{gate} =4.61) fabricated on a P-type silicon wafer with uniform doping concentration N_A=10¹⁷cm⁻³. The transistor width W=1.0 µm, length L=100 nm, and the gate dielectric is HfSiON ($\varepsilon = 16$) with physical thickness T_{ox}=3nm.
 - (a) Determine the flat-band voltage (V_{fb}) at room temperature (5%).
 - (b) What is the threshold voltage (V_{th}) at room temperature (5%).
 - (c) In the following table, the first column lists changes/alterations to the MOSFET design. The other columns list the responses of various measurable quantities. Fill in the blanks ("↑" for increase; "↓" for decrease; "—" for no change). (20 %)

	V _{th}	W_{dep}	$V_{ m fb}$	Ion	μ
Increase N _A					
Increase Tox				-	
Increase Φ _{gate}		-			
Increase μ					1

- W_{dep} : depletion region width; I_{on} : on-state drive current when $V_{ds}=V_{gs}=V_{dd}$. μ : channel mobility.
- Blanks that are already filled in can be ignored.
- The electron affinity of silicon is $\chi=4.05$

編號: 206

國立成功大學 106 學年度碩士班招生考試試題

系 所:電機資訊學院-微電、奈米聯招

考試科目:固態電子元件

考試日期:0213,節次:2

والأفار الماضحون المساور والمساور

第2頁,共2頁

- 6. Which of the following best describes the transport of enhancement mode MOSFET in the on-state (5%)?
 - (a) Mainly due to diffusion of carriers in the channel
 - (b) Mainly due to drift of carriers in the channel
 - (c) Has equal contribution from drift and diffusion
 - (d) None of the above
- 7. Which of the following best describes the transport of bipolar junction transistor in the forward active mode (5%)?
 - (a) Mainly due to diffusion of carriers in the channel
 - (b) Mainly due to drift of carriers in the channel
 - (c) Has equal contribution from drift and diffusion
 - (d) None of the above
- 8. The FinFET transistor is introduced recently to solve the problem of short channel effects in conventional planar MOSFET. Which one is **NOT** an unwanted result of short channel effect (5%)?
 - (a) Gate tunneling current
 - (b) Drain induced barrier lowering (DIBL)
 - (c) Threshold voltage roll-off
 - (d) Sub-threshold swing (SS) degradation
- 9. Velocity saturation reduces the MOSFET saturation current when horizontal (source-to-drain) electric field is sufficiently large. Approximately what is the value of saturation velocity for N-channel silicon MOSFET (5%)?
 - (a) $2.5 \times 10^2 \text{ cm/s}$
 - (b) 3×10^4 cm/s
 - (c) 8×10^6 cm/s
 - (d) 2×10^8 cm/s