國立成功大學

114學年度碩士班招生考試試題

編 號: 146

系 所: 電機資訊學院-微電、奈米聯招

科 目: 半導體元件物理

日期:0210

節 次:第2節

注 意: 1.可使用計算機

2.請於答案卷(卡)作答,於 試題上作答,不予計分。

- 1. For an NPN bipolar junction transistors, how do we increase (enhance) the current gain (β) (5%, single choice)?
 - A. Increase the emitter doping
 - B. Increase the base width
 - C. Increase the base doping
 - D. Increase the hole mobility/hole diffusion coefficient
- 2. In a planar bulk MOSFET, gate-induced drain leakage current flows from (5%, single choice)
 - A. Drain terminal to source terminal
 - B. Drain terminal to gate terminal
 - C. Drain terminal to substrate terminal
 - D. Gate terminal to substrate terminal
- 3. For MOSFETs, which of the following physical phenomenon does \underline{NOT} affect the output conductance (g_{ds}) or output resistance (r_o) during on-state (5%, single choice)?
 - A. Channel length modulation
 - B. Drain-induced barrier lowering
 - C. Gate-induced drain leakage
 - D. Self heating effect
- 4. Which of the following is NOT true regarding velocity saturation in MOSFETs (5%, single choice)
 - A. Causes the channel electron/hole velocity to reduce
 - B. Causes drain current to reduce
 - C. Happens when the channel length is very long
 - D. Physically velocity saturation is due to optical phonon scattering
- 5. In MOSFETs, the inversion layer is not exactly at the silicon/SiO₂ interface (surface), but about 1.5 nm below. This is because (5%, single choice)
 - A. Bad interface quality at MOSFET surface
 - B. Quantum confinement causes electron/hole density to peak at 1.5nm below the surface
 - C. Surface scattering effects
 - D. The first few layers of the channel is not silicon
- 6. For a CMOS technology, how do we incorporate both n-MOSFETs and p-MOSFETs on the same substrate on a p-type silicon wafer (5%, single choice)?
 - A. Place n-MOSFET in n-well and p-MOSFET in a p-well
 - B. Place n-MOSFET in n-well and p-MOSFET directly in the p-type substrate
 - C. Place n-MOSFET in p-well and p-MOSFET directly in the p-type substrate
 - D. Place n-MOSFET directly in the p-type substate and p-MOSFET in an n-well

第2頁,共3頁

- 7. For a long channel n-MOSFET, the gate work function is 4.6eV; the channel material is silicon with a relative dielectric constant of 11.7; the channel is uniformly doped with boron at 10¹⁷cm⁻³; the gate dielectric is HfO₂ with a dielectric constant of 23.4 and a thickness of 2.4nm, plus a SiO₂ interfacial layer with thickness of 0.6nm; the surface potential at threshold is 0.85V. The threshold voltage is V_{t0}=0.4V. (20%)
 - 1) Calculate the equivalent oxide thickness (EOT) without considering the effects of inversion layer thickness (5%).
 - 2) Assuming the inversion layer is on average 1.5nm below Si/SiO₂ interface in silicon, contributing to an additional 0.5nm in the EOT, calculate the oxide capacitance C_{ox} (per unit area) (5%)
 - 3) If we increase the gate work function to 4.8eV, calculate the change in threshold voltage $\Delta Vt = V_{t(new)}-V_{t0}$. (5%)
 - 4) If we increase the doping to 2 x 10^{17} cm⁻³ while keeping the gate work function at 4.6eV, calculate ΔV_t . (5%)
- 8. The figure below shows the room-temperature (300 K) capacitance-voltage (C-V) characteristics of a uniformly doped silicon PN junction diode. The graph is drawn to scale. Assume each side of the junction contains only one type of dopant (i.e., p-side is acceptor-only and n-side is donor-only). The doping concentration on the p-side (N_A) is 10 times higher than that on the n-side (N_D). All dopants are 100% ionized, and the diode's junction area is 2.1×10^{-5} cm². (13%)

The following physical constants might be needed in this question:

Free-space permittivity = $8.85 \times 10^{-14} F/cm$

Electronic charge = $1.6 \times 10^{-19}C$

Dielectric constant of Si = 11.9

Free electron mass $m_0 = 9.1 \times 10^{-31} kg$

Effective electron mass = $1.12 m_0$; Effective hole mass = $0.8 m_0$

Boltzmann constant $k = 1.38 \times 10^{-23} J/K$

Planck constant $h = 6.626 \times 10^{-34}$ J-s.

Answer the following questions:

- (a) Find the built-in voltage (V_{bi}) of the junction in the units of volt. (3%)
- (b) Calculate the dopant concentration on the lowly doped side of the diode in the units of cm^{-3} . (5%)
- (c) Calculate the depletion width of the diode at $V_a = -1.5V$ in microns. (5%)
- 9. A semiconductor is characterized by the energy band diagram below. It is also known that $E_G = 1.12$ eV, kT = 0.0259 eV, $n_i = 10^{10}$ cm⁻³, $\mu_n = 1350$ cm²/Vs, $\mu_p = 460$ cm²/Vs and $\tau_n = 10^{-4}$ s. (37%)

- (a) Sketch the <u>electrostatic potential</u> and the <u>electric field</u> inside the semiconductor as a function of x, labeling the positions x = 0, x_a , x_b , and x_c . (6%)
- (b) Sketch the electron concentration n as a function of the position x, indicate n_i . (4%)
- (c) Calculate n at $x = x_a$ and $x = x_c$. (6%)
- (d) Calculate the resistivity of the semiconductor at $x = x_a$ and $x = x_c$. (6%)
- (e) Is there an electron drift current at $x = x_a$? Is there an electron diffusion current at $x = x_a$? What is the total electron current density J_n at $x = x_a$? Explain your answers but don't calculate numerical values for the diffusion and drift current. (6%)
- (f) An electron at $x = x_b$ with total energy $E = E_C$ moves from $x = x_b$ to x = 0 without changing its total energy. What is the kinetic energy of the electron upon arriving at x = 0? (4%)
- (g) By illumination, an excess of electron-hole pairs is generated at $x = x_c$ at a rate $G_L = 10^{19}$ cm⁻³ s⁻¹. Calculate the resistivity of the semiconductor at $x = x_c$ after illumination. (5%)