國立成功大學一○○學年度碩士班招生考試試題

系所組別: 電腦與通信工程研究所乙組 考試科目: 通信數學

編號:

214

※ 考生請注意:本試題 □可 □□不可 使用計算機

- (10%) Among 33 students in a class, 17 of them earned A's on the midterm exam, 14 earned A's on the final exam, and 11 did not earn A's on either examination. What is the probability that a randomly selected student from this class earned an A on both exams?
- 2. (15%) Suppose that three numbers are selected one by one, at random and without replacement from the set of numbers {1, 2, 3, ..., n}. What is the probability that the third number falls between the first two if the first number is smaller than the second?
- 3. (15%) Prove that if X is a positive, continuous, memoryless random variable with distribution function F, then $F(t) = 1 e^{-\lambda t}$, for some $\lambda > 0$. This shows that the exponential is the only distribution on $(0, \infty)$ with the memoryless property.
- 4. (10%) Let X_1, X_2, X_3 , and X_4 be four independently selected random numbers from (0, 1). Find $P(1/4 < X_{(3)} < 1/2)$. $X_{(3)}$ is the the 3rd smallest value in $\{X_1, X_2, X_3, X_4\}$.
- 5. (25%) Mark each of the following statements True (7) or False (F). (Need NOT to give reasons.)
 - (a) A real square matrix may have complex eigenvalues and complex eigenvectors.
 - (b) Let M be a symmetric matrix. If M is invertible, then M^{-1} is also a symmetric matrix.
 - (c) Let M be a real square matrix of size n. If $||M\mathbf{x}||^2 = ||\mathbf{x}||^2$ for all $\mathbf{x} \in \mathbb{R}^n$, then M is an orthogonal matrix, $M^T M = I_n$.
 - (d) Let M be an $m \times n$ matrix, $m \neq n$. We have $\operatorname{rank}(M^T M) = \operatorname{rank}(M M^T)$.
 - (e) Let M be an $m \times n$ matrix, $m \neq n$. We have nullity $(M^T M) =$ nullity (MM^T) .
- 6. (15%) Suppose that A is a square matrix of size n, and $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues of A, with the corresponding multiplicity m_1, \ldots, m_k , respectively, where $m_1 + \cdots + m_k = n$. Prove the determinant of A is

$$\det(A) = \lambda_1^{m_1} \lambda_2^{m_2} \cdots \lambda_k^{m_k}.$$

7. (10%) Let I_m and I_n be identity matrices of sizes m and n, respectively, where we assume m > n. Can you find an $m \times n$ matrix A and an $n \times m$ matrix B such that $AB = I_m$ and $BA = I_n$? (Explain your answer.)