※ 考生請注意：本試題 \square 可 \square 不可 使用計算機

1．（ 10% ）Among 33 students in a class， 17 of them earned A＇s on the midterm exam， 14 earned A＇s on the final exam，and 11 did not earn A＇s on either examination．What is the probability that a randomly selected student from this class earned an A on both exams？

2．（ 15% ）Suppose that three numbers are selected one by one，at random and without replacement from the set of numbers $\{1,2,3, \ldots, n\}$ ．What is the probability that the third number falls between the first two if the first number is smaller than the second？

3．（15\％）Prove that if X is a positive，continuous，memoryless random variable with distribution function F ，then $F(t)=1-\mathrm{e}^{-\lambda t}$ ，for some $\lambda>0$ ．This shows that the exponential is the only distribution on $(0, \infty)$ with the memoryless property．

4．（10\％）Let X_{1}, X_{2}, X_{3} ，and X_{4} be four independently selected random numbers from（ 0,1 ）． Find $P\left(1 / 4<X_{(3)}<1 / 2\right) . X_{(3)}$ is the the 3rd smallest value in $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$ ．

5．（25\％）Mark each of the following statements True（ ${ }_{2}$ ）or False（F）．（Need NOT to give reasons．）
（a）A real square matrix may have complex eigenvalues and complex eigenvectors．
（b）Let M be a symmetric matrix．If M is invertible，then M^{-1} is also a symmetric matrix．
（c）Let M be a real square matrix of size n ．If $\|M \mathrm{x}\|^{2}=\|\mathrm{x}\|^{2}$ for all $\mathrm{x} \in \mathbb{R}^{n}$ ，then M is an orthogonal matrix，$M^{T} M=I_{n}$ ．
（d）Let M be an $m \times n$ matrix，$m \neq n$ ．We have $\operatorname{rank}\left(M^{T} M\right)=\operatorname{rank}\left(M M^{T}\right)$ ．
（e）Let M be an $m \times n$ matrix，$m \neq n$ ．We have nullity $\left(M^{T} M\right)=\operatorname{nullity}\left(M M^{T}\right)$ ．
6．（ 15% ）Suppose that A is a square matrix of size n ，and $\lambda_{1}, \ldots, \lambda_{k}$ are distinct eigenvalues of A ， with the corresponding multiplicity m_{1}, \ldots, m_{k} ，respectively，where $m_{1}+\cdots+m_{k}=n$ ．Prove the determinant of A is

$$
\operatorname{det}(A)=\lambda_{1}^{m_{1}} \lambda_{2}^{m_{2}} \cdots \lambda_{k}^{m_{k}}
$$

7．（ 10% ）Let I_{m} and I_{n} be identity matrices of sizes m and n ，respectively，where we assume $m>n$ ．Can you find an $m \times n$ matrix A and an $n \times m$ matrix B such that $A B=I_{m}$ and $B A=I_{n}$ ？（Explain your answer．）

