编號: 190, 191, 204

國立成功大學一〇一學年度碩士班招生考試試題

共3頁,第/頁

系所組別: 電機工程學系甲、乙、丁、戊組、微電子工程研究所、電腦與通信工程研究所丙、丁組 考試科目: 電子學 考試日期:0226、節次:1

※ 考生請注意:本試題可使用計算機,並限「考選部核定之國家考試電子計算器」機型

- 1. Determine true or false for statements related to devices BJT and MOSFET. If false, please briefly explain to get full credits. (12%)
 - (1) BJT and MOSFET are both three-terminal devices.
 - (2) The emitter current of BJT is solely controlled by the BASE terminal while the drain-to-source current of MOSFET is only controlled by the GATE terminal.
 - (3) The current of BJT and MOSFET in active mode/saturation region are both driven by majority carriers in the respective device.
 - (4) Generally speaking, the current driving strength of BJT device is stronger than that of MOSFET with the same device dimension.
 - (5) There are parasitic diodes in both BJT and MOSFET devices.
 - (6) Einstein relationship can be applied to both BJT and MOSFET devices.
- A particular MOS inverter has the following transfer characteristic curve as shown in Fig.
 , where Vo is the output voltage and Vi is the input voltage. What are the values for V_{OH},
 V_{OL}, V_{IH}, V_{IL}, NM_H and NM_L that are used to define noise margin? (8%)

- For the MOSFET circuit shown in the Fig. 2, determine the specified output voltage under difference cases. Consider the long-channel process technology for which |V_{tn}| =|V_{tp}|= 1 V, t_{ox} = 8 nm, μ_n = 450cm²/V•s, μ_p = 150cm²/V•s, ε_{ox} = 4.0×10⁻¹¹F/m, (W/L)₁ = 4µm/0.8µm, V_{DD} = 5V. The subscript 1 & 2 stand for parameters related transistor Q1 & Q2, respectively. Channel-length modulation effect can be ignored here. (13%)
 - (a) What are the values of k'_n and k'_p including their unit?
 - (b) Assume $k'_{p}(W/L)_{2} = k'_{n}(W/L)_{1}$, find \mathcal{V}_{0} when $\mathcal{V}_{1} = 0V$ and $\mathcal{V}_{1} = 5V$, respectively.
 - (c) Assume $k'_{p}(W/L)_{2} = 0.01k'_{n}(W/L)_{1}$, find \mathcal{V}_{0} when $\mathcal{V}_{1} = 2.5V$.

(背面仍有題目,請繼續作答)

編號: 190, 191, 204 **國立成功大學一〇一學年度碩士班招生考试試題** 共 3頁, 第2頁 系所組別: 電機工程學系甲、乙、丁、戊組、微電子工程研究所、電腦與通信工程研究所丙、丁組 考試4目: 電子學 考試日期: 0226 節次: 1

※ 考生請注意:本試題可使用計算機,並限「考選部核定之國家考試電子計算器」機型

- For the circuit shown in Fig. 3, the relative transistors areas are A_{Q1}=A_{Q2}=A_{Q3}=A_{Q4}=A_{Q6}=1. Assume that v_{BE}≅0.7V and β is very large for all transistors. Please find the value of resistors (R₁, R₂ and R₃) and A_{Q5} to achieve I₂=1mA, I₃=50µA, I₅=3mA, and I₆=100µA. (12%)
- 5. An active-loaded MOS differential amplifier is shown in Fig. 4. The NMOS transistor parameters are V_t=+2V, V_A(channel length modulation voltage)=-40V, and V_{GS}=+4V at I_D=1mA; The PMOS transistor parameters are V_t=-3V, V_A=+40V, and V_{GS}=-6V at I_D=1mA. Please calculate G_m, R_o(output resistance), A_d (differential gain), and A_c (common-mode gain) (12%).

Fig. 4

國立成功大學一〇一學年度碩士班招生考試試題

共3頁,第3頁

系所組別: 電機工程學系甲、乙、丁、戊組、微電子工程研究所、電腦與通信工程研究所丙、丁組 考試科目: 電子學
考試日期:0226,節次:1

※ 考生請注意:本試題可使用計算機,並限「考選部核定之國家考試電子計算器」機型

- 6. A single-pole op amp has a dc gain of 100 dB and a unity-gain frequency of 10 MHz.
 - (a) What is the upper-cutoff frequency of the op amp itself? (3%)
 - (b) If the op amp is used to build a noninverting amplifier with a closed-loop gain of 60 dB, what is the bandwidth of the feedback amplifier? (3%)
 - (c) Write an expression for the transfer function of the noninverting amplifier. (3%)
- 7. A two-stage CMOS Opamp circuit is shown in Fig. 5, ± 1.65 V power supplies are used and all transistors except for Q₆ and Q₇ are operated with overdrive voltages of 0.2 V magnitude; Q₆ and Q₇, use overdrive voltages of 0.5 V magnitude. The fabrication process provides V_{tn} = $|V_{tp}| = 0.5$ V. If the first-stage bias current I = 200 μ A, C = 1.6 pF.
 - (a) Find the input common-mode range and the range allowed for V_0 . (6%)
 - (b) Draw the simplified circuit model for the slewing process. (5%)
 - (c) Calculate the slew rate of this Opamp. (5%)

編號:

190, 191, 204

- 8. Consider a circuit as shown in Fig. 6 assuming the Opamp to be ideal. Let $C_1 = 0.001 \ \mu\text{F}$, $C_2 = 0.0047 \ \mu\text{F}$, $R_1 = 10 \ \text{k}\Omega$, $R_2 = 20 \ \text{k}\Omega$.
 - (a) Derive the transfer function V_o/V_i . (9%)
 - (b) Plot the frequency response of the transfer function and explain the function of this circuit. (9%)

