系所組別：電腦與通信工程研究所乙組

考試科目：通信數學

1．（ 15% ）A bar of length L is broken into three pieces at two random spots．What is the probability that the length of at least one piece is less than $L / 20$ ？

2．（10\％）Let $p(x, y, z)=(x y z) / 162, x=4,5, y=1,2,3$ ，and $z=1,2$ ，be the joint probabil－ ity mass function of the random variables X, Y, Z ．
（a）Calculate the joint marginal probability mass functions of X, Y ．
（b）Find $E(Y Z)$ ．
3．（ 15% ）Let X be a continuous random variable with set of possible values $\{x: 0<x<\alpha\}$ （where $\alpha<\infty$ ），distribution function F ，and density function f ．Using integration by parts，prove the following expectation

$$
E[X]=\int_{0}^{\alpha}[1-F(t)] d t
$$

relationship．
4．（ 10% ）In a study conducted three years ago， 82% of the people in a randomly selected sample were found to have good financial credit ratings，while the remaining 18% were found to have bad financial credit ratings．Current records of the people from that sample show that 30% of those with bad credit ratings have since improved their ratings to good， while 15% of those with good credit ratings have since changed to having a bad credit rating．What percentage of people with good credit ratings now had bad ratings three years ago？

5．（20\％）Mark each of the following statements True（T）or False（F）．（Need not to give reasons．）
（a）If all eigenvalues of a matrix A are zero，then $\operatorname{rank}(A)=0$ ．
（b）Suppose A and B are square matrices and $A B=O$ ，where O is the zero matrix． Then either $A=O$ or $B=O$ ．
（c）Suppose V is a vector space，and W and U are two subspaces of V ．Then the intersection $W \cap U$ is also a subspace of V ．
（d）It is possible that we can define two or more inner products in a vector space．

6．（ 15% ）Let A and B be two square matrices of size n ．Which of the following statements are true in general？（Need not to give reasons．）（a） $\operatorname{det}(A B)=\operatorname{det}(B A)$ ．（b）$A B=$ $B A$ ．（c） $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ ．（d） $\operatorname{rank}(A B)=\operatorname{rank}(B A)$ ．（ $\operatorname{det}(M)$ and $\operatorname{tr}(M)$ denote the determinant and the trace of a square matrix M ，respectively．）

7．（ 15% ）Denoted by \mathcal{M}_{n} the vector space of all $n \times n$ matrices，where n is an integer． Suppose that S is a subset of \mathcal{M}_{n} and S is composed of all non－invertible matrices． Determine if S is a subspace of \mathcal{M}_{n} ．（You need to verify or prove your answer．）

