1．（20\％）（a）Find a particular solution to the equation $\dot{x}+3 x=e^{2 t}$ ．
（b）Find a particular solution to the equation $\dot{x}+3 x=\cos (2 t)$ ．
2．(15%) Consider the 1 D wave equation for the waves on the rope：

$$
\begin{equation*}
u_{t t}=u_{x x}, \quad 0<x<1, t>0 \tag{i}
\end{equation*}
$$

subjected to the following conditions：

$$
\begin{align*}
& u(0, t)=0 \text { (ii) and } u(1, t)=\sin \omega t, \text { for } t>0 \tag{iii}\\
& u(x, 0)=u_{t}(x, 0)=0, \text { for } 0<x<1 \text { (iv) }
\end{align*}
$$

（a）Find a solution of the wave form

$$
U(x, t)=X(x) \sin \omega t
$$

that satisfies the PDE（i）and the BCs（ii），（iii），and（iv）．
（b）Also find where is the rope stationary（i．e．$U(x, t)=0$ ）？And（c）for what values of ω is your solution invalid？

3．（15\％）Evaluate

$$
\int_{\gamma} \frac{|z| e^{z}}{z^{2}} d z
$$

where γ is the circle with radius 2 and center 0 ．
4．（20\％）Mark each of the following statements True（T）or False（F）．（Need not to give reasons．）
（a）Suppose A and B are square matrices and $A B=O$ ，where O is the zero matrix． Then either $A=O$ or $B=O$ ．
（b）Suppose V is a vector space，and W and U are two subspaces of V ．Then the intersection $W \cap U$ is also a subspace of V ．
（c）If all eigenvalues of a matrix A are zero，then $\operatorname{rank}(A)=0$ ．
（d）It is possible that we can define two or more inner products in a vector space．
5．（ 15% ）Let A and B be two square matrices of size n ．Which of the following statements are true in general？（Need not to give reasons．）（a） $\operatorname{rank}(A B)=\operatorname{rank}(B A)$ ．
（b）$A B=B A$ ．
（c） $\operatorname{det}(A B)=\operatorname{det}(B A)$ ．
（d） $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ ．
（ $\operatorname{det}(M)$ and $\operatorname{tr}(M)$ denote the determinant and the trace of a square matrix M ，respec－ tively．）

6．（15\％）Denoted by \mathcal{M}_{n} the vector space of all $n \times n$ matrices，where n is an integer． Suppose that S is a subset of \mathcal{M}_{n} and S is composed of all non－invertible matrices． Determine if S is a subspace of \mathcal{M}_{n} ．（You need to verify or prove your answer．）

