Problem 1 （20 Points）

Two infinitely long transmission lines are connected together．One＇s characteristic impedance is 200Ω and the other＇s is 50Ω ．If a wave at the 200Ω line is propagating toward the junction，what are the reflection and the transmission coefficients？What percentage of the power has been transmitted across the junction？Design a transmission－line transformer to reduce the reflection to zero．What is the VSWR at this matching transmission－line section？

Problem 2 （20 Points）

A uniform plane wave propagating in air given by $\vec{E}_{i}(x)=30 e^{-j 20 \pi x}(\hat{y}+j \hat{z}) \quad V / m$ is normally incident on a perfectly conducting plane located at $x=0$ ．（a）Find the frequency and wavelength of the wave．（b）Find the corresponding magnetic field $\bar{H}_{i}(x)$ ．（c）Find the electric and magnetic field vectors of the reflected waves ［i．e．， $\bar{E}_{r}(x)$ and $\bar{H}_{r}(x)$ ］．（d）Compare the polarizations of the incident and reflected waves．

Problem 3 （20 Points）
Calculate the dimensions of an air－filled rectangular waveguide for which the cutoff frequencies for TM_{11} and TE_{03} modes are both equal to 12 GHz ．What is the dominant mode of this waveguide？At 6 GHz ，determine whether the dominant mode will propagate or evanescent in the waveguide．

Problem 4 （20 Points）
（1）The current distributions of infinitesimal（ $L \ll \lambda$ ）dipole antenna A and B are given as $I_{A}=4 I_{0}(L / 2-|z|) / L$ and $I_{B}=I_{0}$ ，for $-(L / 2) \leq z \leq(L / 2)$ ．Find the ratio of the radiation resistance of these two antennas．（2）A linear array on the z axis，with four isotropic sources of equal amplitude and equal distance $d=\lambda / 4$ ，such that the main beam is at $\theta=120^{\circ}$ ．Find the required progressive phase difference between the antenna elements．

Problem 5 （20 Points）

A load of $100-j 150 \Omega$ is connected to a 50Ω lossless line．Find：（a）VSWR，（b）The load admittance Y_{L} ，（c）$Z_{\text {in }}$ at 0.25λ from the load，（d）the line lengths d_{l} and d_{2} for a single short－circuited stub matching．（You MUST use Smith Chart to find all the answers and write down all steps of your reasoning）

