1．From a faculty of six professors，six associate professors，ten assistant professors，and twelve instructors，a committee of size six is formed randomly．What is the probability that
（a）（ 8% ）there are exactly two professors on the committee；
（b）（ 7% ）all committee members are of the same rank？

2．(15%) Let X be a random integer from the set $\{1,2, \ldots, N\}$ ．Find $E(X), \operatorname{Var}(X)$ ，and σ_{X} ．
3．Let X be a geometric random variable with parameter p ，and n and m be nonnegative integers．
（a）（5\％）For what values of n is $P(X=n)$ maximum？
（b）（5\％）What is the probability that X is even？
（c）(10%) Show that the geometric is the only distribution on the positive integers with the memoryless property：$P(X>n+m \mid X>m)=P(X>n)$ ．

4．（25\％）Mark each of the following statements True（T）or False（F）．
（a）If a square matrix A is not invertible，then $A+I$ is invertible，where I is the identity matrix of the same size as A ．
（b）Let W be a subspace of an inner product space V ，and W^{\perp} be the orthogonal complement of W ．In general，we have $W \cup W^{\perp}=V$ ．
（c）We can transform any linear independent set of non－zero vectors into an orthogonal set of vectors by the Gram－Schmidt process．
（d）If A and B are two $n \times n$ non－invertible matrices，then $A B$ is also non－invertible．
（e）Let T be a linear transformation from a vector space V to a vector space W ．Define a transformation $S: \mathbf{v} \rightarrow T(\mathbf{v})+\mathbf{w}_{o}$ from V to W ，where \mathbf{w}_{o} is a constant vector in W ． Then S is also a linear transformation from V to W ．

5．Suppose that A is a 5×3 real matrix of rank 3 ．Let $W=A^{T} A$ and $S=A A^{T}$ ．
（a）(10%) Find the ranks of W and S ．
（b）(5%) Explain why $\lambda=0$ is an eigenvalue of S ．
（c）（ 10% ）What is the（algebraic）multiplicity of the eigenvalue $\lambda=0$ of S ？

