國立成功大學 102 學年度碩士班招生考試試題

系所組別:電腦與通信工程研究所丙組 考試科目:電磁學及電磁波

編號: 198

考試日期:0223,節次:2

※ 考生請注意:本試題可使用計算機 For your reference: $\varepsilon_0 = 10^{-9}/36\pi$ (F/m);

 $\varepsilon_0 = 10^{-9}/36\pi$ (F/m); $\mu_0 = 4\pi \times 10^{-7}$ (H/m); $\eta_0 = 120\pi$ (Ω) Permitivity ε (= $\varepsilon_r \varepsilon_0$); Permeability μ (= $\mu_r \mu_0$); Conductivity σ

一、簡答題 (Answer Briefly) : (25%).

- 1. Given an EM-wave with the field components of $\vec{E}(\vec{R};t) = \text{Re}[\vec{E}_0(\vec{R}) \cdot e^{j\omega t}]$ and $\vec{H}(\vec{R};t) = \text{Re}[\vec{H}_0(\vec{R}) \cdot e^{j\omega t}]$ propergating along the direction of \vec{R} . What are the instantaneous power flow density and the average power flow density that the EM-wave carries? (5%)
- 2. What are the boundary conditions for the normal and tangential components of \vec{E} and \vec{H} at the interface between two kinds of materials with (ε_1 , μ_1) and (ε_2 , μ_2), respectively. (5%)
- 3. Please tell the TM wave from the TEM wave by the directions of vector field components. (5%)
- 4. What is the intrinsic impedance of a lossy material with (ε , μ , σ)? What does it mean if the intrinsic impedance value contains an imaginary-number part? (5%)
- Given P_{in}: the energy power into an antenna, P_{rad}: the energy power radiated from the antenna to the space, and P_{loss}: the energy loss in the antenna. Find the radiation efficiency of the antenna? (5%)
- 二、計算題 (Calculations): (75%)
- 1. As shown in **Fig.1** is the cross section of an infinite air-filled coaxial cable with a spacer structure between the conductors. The spacers are made out of an imperfect dielectric ($\varepsilon = 4\varepsilon_0$, $\mu = \mu_0$) of conductivity of $\sigma = 10^{-3}$ S/m and the cross section is defined by an angle $\alpha = 60^{\circ}$. The conductor radii are *a* and *b*, respectively. Assumed the air dielectric constant is ε_0 with no loss. [note: you can keep ε_0 and μ_0 in your answer expressions.]
- (1) What is the conductance per unit length of this cable. (5%)
- (2) What is the total capacitance per unit length of this cable? (5%) If a uniform current flows into the inner conductor and returns back from the outer conductor, find

(3) the total inductance per unit length, including the internal-inductance of the inner conductor, of this coaxial cable under static-field approximation. (5%)

- A lossless 75-Ohm transmission line is terminated in an unknown load impedance Z_L. The measured voltage standing wave ratio (VSWR) is 3. The first voltage minimum is located at 6 cm from the load. The distance between successive voltage minima is 15 cm. Please find
- (1) the reflection coefficient Γ . (5%)
- (2) the load impedance Z_L (5%)
- (3) the first distance from the load where the input impedance toward the load will be a maximum real number. Also find this maximum value of equivalent impedance. (5%)

(背面仍有題目, 請繼續作答)

編號: 198	國立成功大學 102 學年度碩士班招生考試試題	共 2 頁 [,] 第2頁
系所組別:電腦與	具通信工程研究所丙組	
考試科目:電磁學及電磁波		考 試日期:0223,節次:2
※ 考生請注意:	本試題可使用計算機	
	· · · · · · · · · · · · · · · · · · ·	
3. An air-filled rectangular waveguide has a cross section with the aspect ratio of $a/b = 2$ and a		
dominant-mode cutoff frequency of 0.908 GHz. If the measured guide wavelength is 30 cm. Find		
(1) the operation frequency; (5%)		
(2) the waveguide cross section dimensions (that is, $a = ?$ and $b = ?$); (5%)		
(3) the wave number. (5%)		
4. The far fields of a Hertzian dipole (as illustrated in Fig. 2 when $R >> d\ell$) can be expressed as		
$\vec{H}_{\phi} = \hat{a}_{\phi} \cdot j \frac{I d\ell}{4\pi}$	$(\frac{e^{-j\beta R}}{R})\beta\sin\theta$	
$\vec{\mathrm{E}}_{\theta} = \hat{\mathrm{a}}_{\theta} \cdot \mathrm{j} \frac{\mathrm{I} \mathrm{d} \ell}{4\pi}$	$\left(\frac{e^{-j\beta R}}{R}\right)\eta_0\beta\sin\theta$	

- (1) Plot the E-plane and H-plane radiation patterns and find the 3-dB beamwidth. (5%)
- (2) Find the directive gain $G_{D}(\theta, \phi)$ and the directivity D (in dB). (5%)
- (3) Find the radiation resistance. (5%)
- 5. The lossless LC matching network shown in Fig. 3 is used to match a 50-Ohm transmission line (T.L.) to the input of an RF transistor operated at 2.4 GHz. The input reflection coefficient for the transistor is $\Gamma = 0.6 \angle -150^\circ$, measured from a 50-Ohm system. Find the values of L and C for the conjugate matching condition. (15%)

