※ 考生請注意：本試題可使用計算機
For your reference：$\quad \varepsilon_{0}=10^{-9} / 36 \pi(\mathrm{~F} / \mathrm{m}) ; \quad \mu_{0}=4 \pi \times 10^{-7}(\mathrm{H} / \mathrm{m}) ; \quad \eta_{0}=120 \pi(\Omega)$
Permitivity $\varepsilon\left(=\varepsilon_{\mathrm{r}} \varepsilon_{0}\right) ; \quad$ Permeability $\mu\left(=\mu_{\mathrm{r}} \mu_{0}\right) ; \quad$ Conductivity σ

一，簡答題（Answer Briefly）：（25\％）．
1．Given an $E M$－wave with the field components of $\vec{E}(\vec{R} ; t)=\operatorname{Re}\left[\vec{E}_{0}(\vec{R}) \cdot e^{j \omega t}\right]$ and $\vec{H}(\vec{R} ; t)=\operatorname{Re}\left[\vec{H}_{0}(\vec{R}) \cdot e^{j \omega t}\right]$ propergating along the direction of \vec{R} ．What are the instantaneous power flow density and the average power flow density that the EM－wave carries？（5\％）
2．What are the boundary conditions for the normal and tangential components of \vec{E} and \vec{H} at the interface between two kinds of materials with $\left(\varepsilon_{1}, \mu_{1}\right)$ and $\left(\varepsilon_{2}, \mu_{2}\right)$ ，respectively．（5\％）
3．Please tell the TM wave from the TEM wave by the directions of vector field components．（5\％）
4．What is the intrinsic impedance of a lossy material with $(\varepsilon, \mu, \sigma)$ ？What does it mean if the intrinsic impedance value contains an imaginary－number part？（5\％）
5．Given $P_{\text {in }}$ ：the energy power into an antenna，$P_{\text {rad }}$ ：the energy power radiated from the antenna to the space，and $P_{\text {loss }}$ ：the energy loss in the antenna．Find the radiation efficiency of the antenna？（5\％）

二，計算題（Calculations）：（75\％）
1．As shown in Fig． 1 is the cross section of an infinite air－filled coaxial cable with a spacer structure between the conductors．The spacers are made out of an imperfect dielectric（ $\varepsilon=4 \varepsilon_{0}, \mu=\mu_{0}$ ）of conductivity of $\sigma=10^{-3}$ S / m and the cross section is defined by an angle $\alpha=60^{\circ}$ ．The conductor radii are \boldsymbol{a} and \boldsymbol{b} ，respectively．Assumed the air dielectric constant is ε_{0} with no loss．［note：you can keep ε_{0} and μ_{0} in your answer expressions．］

Fig． 1
Cross section of a coaxial cable
（1）What is the conductance per unit length of this cable．（5\％）
（2）What is the total capacitance per unit length of this cable？（5\％） If a uniform current flows into the inner conductor and returns back from the outer conductor，find
（3）the total inductance per unit length，including the internal－inductance of the inner conductor，of this coaxial cable under static－field approximation．（5\％）

2．A lossless $\mathbf{7 5 - O h m}$ transmission line is terminated in an unknown load impedance $\mathbf{Z}_{\mathbf{L}}$ ．The measured voltage standing wave ratio（VSWR）is 3 ．The first voltage minimum is located at 6 cm from the load．The distance between successive voltage minima is 15 cm ．Please find
（1）the reflection coefficient Γ ．（5\％）
（2）the load impedance \mathbf{Z}_{L} ．（5\％）
（3）the first distance from the load where the input impedance toward the load will be a maximum real number．Also find this maximum value of equivalent impedance．（5\％）
（背面仍有題目，請繼續作答）
※ 考生請注意：本試題可使用計算機

3．An air－filled rectangular waveguide has a cross section with the aspect ratio of $a / b=2$ and a dominant－mode cutoff frequency of 0.908 GHz ．If the measured guide wavelength is 30 cm ．Find
（1）the operation frequency；（5\％）
（2）the waveguide cross section dimensions（that is，$a=$ ？and $b=$ ？；（ 5% ）
（3）the wave number．（5\％）

4．The far fields of a Hertzian dipole（as illustrated in Fig． 2 when $R \gg d \ell$ ）can be expressed as
$\vec{H}_{\phi}=\hat{a}_{\phi} \cdot j \frac{I d \ell}{4 \pi}\left(\frac{e^{-j \beta R}}{R}\right) \beta \sin \theta$
$\overrightarrow{\mathrm{E}}_{\theta}=\hat{\mathrm{a}}_{\theta} \cdot \mathrm{j} \frac{\mathrm{d} \ell}{4 \pi}\left(\frac{e^{-j \beta R}}{\mathrm{R}}\right) \eta_{0} \beta \sin \theta$
（1）Plot the E－plane and H －plane radiation patterns and find the 3－dB beamwidth．（5\％）
（2）Find the directive gain $\mathrm{G}_{\mathrm{D}}(\theta, \phi)$ and the directivity D （in dB$)$ ．（5\％）
（3）Find the radiation resistance．（5\％）

5．The lossless LC matching network shown in Fig． $\mathbf{3}$ is used to match a $\mathbf{5 0 - O h m}$ transmission line（T．L．）to the input of an RF transistor operated at 2.4 GHz ．The input reflection coefficient for the transistor is $\Gamma=0.6 \angle-150^{\circ}$ ，measured from a $\mathbf{5 0 - 0 h m}$ system．Find the values of L and C for the conjugate matching condition．（15\％）

Fig． 2 A Hertzian dipole

Fig． 3 LC matching network

